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Small Area Estimation in the Structural Survey: New contract,
Phase I - with Coverage of GREG Confidence Intervals

Work for the Swiss Federal Statistical Office

Ewa Strzalkowska and Isabel Molina
Department of Statistics, Universidad Carlos III de Madrid

June 9, 2015

1 Introduction
Under a previous contract, several estimators of the proportions of active people in Swiss
districts were compared in model-based and design-based simulation studies that were per-
formed in a realistic way, using data from the Structural Survey. Based on the obtained
results, the empirical best linear unbiased predictor (EBLUP) under a linear mixed model
(LMM) was the selected estimator, together with its benchmarked (BM) version that adds
up to the corresponding national estimate. Parametric and non parametric bootstrap proce-
dures were proposed for estimation of the mean squared error (MSE) of these two small area
estimators. A simulation study was carried out to analyze the performance of the parametric
bootstrap procedure. These selected estimation methods were applied to the real data from
the Structural Survey, using the values of the auxiliary variables from the STATPOP data, in
order to produce estimates of the proportions of active people in Swiss districts and of their
MSEs by the two bootstrap approaches.

This document describes the work carried out under Phase I of the new contract, in which
confidence intervals are studied for the proportions of active people in Swiss districts. We
propose to consider normality-based confidence intervals that use benchmarked EBLUPs
based on the LMM as estimates together with MSE estimates based on new bootstrap pro-
cedures. Again, model-based and design-based simulation studies are carried out to analyze
whether the intervals cover the target parameters with probability 1−α as they are designed
for. We have also studied the coverage of confidence intervals obtained using GREG esti-
mates (considering GREG weights as fixed) together with analytical MSE estimates of these
GREG estimators. Confidence intervals are finally applied to the real data.

Under the previous contract, districts with sample sizes smaller than 150 in the Structural
Survey data were discarded, and the remaining data in that survey was treated as the popu-
lation data. Simulations were based on drawing smaller samples from that “population”, but
taking sample sizes as small as the smallest district sample sizes in the Structural Survey.
Note that in simulation studies, true values must be approximated with the highest possible
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precision because they are the reference values for comparison. Previous design-based sim-
ulation studies carried out to analyze the performance of the parametric bootstrap procedure
for estimation of the design MSE evidenced some lack of stability of the true design MSEs
for the smallest districts, see Figure 2 from report on Phase II of previous project. The
source of this problem is that “population” sizes for those districts (between 150 and 300)
are not large enough to approximate correctly the true MSEs. Note that in the real Swiss
population, the district with smallest population size is 1839, so it is much more realistic to
consider larger population sizes. For this reason, we have repeated the previous simulation
studies for analyzing the performance of the parametric bootstrap MSE as estimator of the
design MSE, but considering as “population” only the set of districts with sample sizes in
the Structural Survey greater than 300, so that true MSEs can be approximated with better
precision. The resulting number of districts is now D = 132. Still, when drawing samples
from this “population”, district sample sizes have been taken exactly as small as in the pre-
vious simulation studies, with the minimum district sample size approximately equal to the
smallest sample size in the original Structural Survey.

For completeness, in this document we include some of the material from the report on
Phase II of the previous contract. Thus, Section 2 describes again the considered estimators
of the proportions of active people. Sections 3 and 4 introduce the parametric and non-
parametric bootstrap approaches for MSE estimation. Section 5 proposes new bootstrap
procedures designed for estimation of design MSE. Section 6 summarizes the results of the
new simulation studies that study the performance of the parametric bootstrap method for es-
timation of the model MSE and also of the design MSE for districts with larger population
sizes. The parametric bootstrap MSE estimates are applied to obtain the normality-based
confidence intervals and simulation studies include the analysis of the coverage of those
confidence intervals, again both under the model-based and design-based setups. Sec-
tion 7 describes simulation results for the new bootstrap procedures. Section 8 deals with
calculation of intervals using the GREG estimates assuming that GREG weights are fixed.
Section 9 comments all the obtained results (point estimates, MSE estimates and confidence
intervals) when applying the methods to the whole Structural Survey and STATPOP data.
Finally, the conclusions of all the work carried out so far are given in Section 10.

2 Point estimators and confidence intervals
Let U be the target population of size N; in this project, U is the set of individuals in the
STATPOP data set. This population is composed of D non-overlapping areas U1, . . . ,UD; in
this case, the Swiss districts, of sizes N1, . . . ,ND with N = ∑

D
d=1 Nd . Let s be a sample of

size n drawn from U ; in this case, s is the set of individuals in the Structural Survey. Let
sd the subsample from area (or district) d of size nd , d = 1, . . . ,D, where n = ∑

D
d=1 nd . Let

s̄d =Ud−sd denote the complement of the sample from area d. Let Ydi ∈ {0,1} be the target
variable for unit i in area d; here, Ydi = 1 stands for “active” and Ydi = 0 for “non-active”.
The target parameters are the area proportions

Pd = N−1
d

Nd

∑
i=1

Ydi, d = 1, . . . ,D.
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Let wdi be the calibrated sampling weight of i-th unit within d-th area. We consider the
GREG estimator given by

P̂GREG
d =

1
N̂d

∑
i∈sd

wdiYdi,

where N̂d = ∑i∈sd
wdi. This estimator is (practically) design unbiased; however, it is ineffi-

cient for areas with small sample sizes because it uses only the area-specific sample data.
Phase I has shown that the empirical best linear unbiased predictors (EBLUPs) based on

a LMM with selected covariates perform significantly better than the GREG estimators in
terms of MSE, both under the model and the design approaches, for practically all districts.
The LMM assumes that the population variables Ydi satisfy a linear regression model in-
cluding random district effects representing the unexplained between-area variability. More
specifically, it assumes that

Ydi = x′diβββ +ud + edi,

ud
iid∼ N(0,σ2

u ), edi
iid∼ N(0,σ2

e ), i = 1, . . . ,Nd, d = 1, . . . ,D, (1)

where ud is the random effect for district d. Although normality is specified in (1), the
best linear unbiased predictor (BLUP) derived from this model does not require normality.
Moreover, even if normality does not hold, maximum likelihood (ML) and restricted ML
(REML) estimates of the model parameters obtained from the normal likelihood are still
consistent under regularity assumptions (Jiang 1996). In fact, we have seen in Phase I of the
project that a LMM provides practically the same small area estimates as a logistic GLMM
with the same set of covariates due to the fact that the true proportions of active people are
in the interval (0.2,0.8), in which the logit function is approximately linear.

For details on the ML fitting of mixed models, see Hartley and Rao (1967). Here we
focus on REML estimates (Patterson and Thompson 1971; 1974), which have smaller bias
for finite sample size. Let β̂ββ be the weighted least squared estimator of βββ and σ̂2

u and σ̂2
e

be the restricted ML (REML) estimators of σ2
u and σ2

e based on the normal likelihood. The
EBLUP of Pd under this model is given by

P̂EBLUP
d =

1
Nd

(
∑
i∈sd

Ydi + ∑
i∈s̄d

Ŷdi

)
, d = 1, . . . ,D, (2)

where Ŷdi = x′diβ̂ββ + ûd is the predicted value of Ydi obtained by fitting the model. Here,
ûd = γ̂d(ȳd− x̄′dβ̂ββ ) is the BLUP of ud , where γ̂d = σ̂2

u/(σ̂
2
u + σ̂2

e /nd), ȳd = n−1
d ∑i∈sd

Ydi and
x̄d = n−1

d ∑i∈sd
xdi.

A desirable property of small area estimators is that the estimated totals for the areas
add up to a reliable estimator of the population total. This property is called the benchmark-
ing property. A reliable estimator of the population total Y = ∑

D
d=1 ∑

Nd
i=1Ydi is the GREG

estimator

Ŷ GREG =
D

∑
d=1

∑
i∈sd

wdiYdi =
D

∑
d=1

N̂dP̂GREG
d .
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A simple adjustment of the EBLUP based on the LMM to make it satisfy the benchmarking
property is the ratio-adjustment

P̂BM
d = P̂EBLUP

d
Ŷ GREG

∑
D
d=1 NdP̂EBLUP

d
, d = 1, . . . ,D. (3)

This estimator is called hereafter benchmarked EBLUP.
Let mse(P̂EBLUP

d ) be an estimate of the MSE of the EBLUP P̂EBLUP
d . A (1− α)%

normality-based confidence interval (CI) for the true district proportion Pd based on P̂EBLUP
d

is given by

CI1−α(Pd) =

[
P̂EBLUP

d − zα/2

√
mse(P̂EBLUP

d ), P̂EBLUP
d + zα/2

√
mse(P̂EBLUP

d )

]
,

where zα/2 is the critical α/2 point of a standard normal distribution. If the reported esti-
mates of the district proportions Pd are the benchmarked EBLUPs P̂BM

d instead of the unad-
justed EBLUPs P̂EBLUP

d , one might wish confidence intervals that are centered around the
reported estimates P̂BM

d . The one can use the (1−α)% normality-based confidence interval
for Pd given by

CI1−α(Pd) =

[
P̂BM

d − zα/2

√
mse(P̂BM

d ), P̂BM
d + zα/2

√
mse(P̂BM

d )

]
,

where mse(P̂BM
d ) is an estimate of the MSE of the benchmarked EBLUP P̂BM

d . The bootstrap
procedures of Sections 3–... provide suitable estimators mse(P̂EBLUP

d ) and mse(P̂BM
d ) of

MSE(P̂EBLUP
d ) and MSE(P̂BM

d ) respectively.
Note that these confidence intervals rely on normality of the EBLUPs or bechmarked

EBLUPs. Although normality of these estimators cannot be ensured even if the target vari-
able was continuous (here it is actually binary), model-based simulation results described
in Section 6 show that the coverage of these normality-based CIs is approximately correct.
Since the number of areas in simulations is not small (D = 132), the central limit theorem
must be acting to ensure approximate coverage.

3 Parametric bootstrap estimator of the model MSE
Analytical approximations to the model MSE of the EBLUP are obtained in the literature
only when normality holds and for the number of areas D tending to infinity. In our problem,
target variables Ydi are binary and therefore the available analytical approximations are not
valid. Moreover, even if an analytical formula was available for the estimated MSE of the
unadjusted EBLUP, this MSE estimator is not necessarily good for the benchmarked esti-
mator. Note that the adjustment factor for the EBLUP given in (3) is random and therefore
analytical approximation of the MSE of the benchmarked estimator is not straightforward.
Thus, here we appeal to a bootstrap procedures that can handle complex estimators simi-
larly as in the case of simple estimators. In this section we describe a parametric bootstrap
procedure especially designed for finite populations that was first introduced by González-
Manteiga et al. (2008). This procedure follows the steps below:
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1) Fit the LMM model (1) to the available sample data {(xdi,Ydi); i ∈ sd, d = 1, . . . ,D},
obtaining model parameter estimates β̂ββ , σ̂2

u and σ̂2
e .

2) Generate bootstrap random effects as u∗d
iid∼ N(0, σ̂2

u ), d = 1, . . . ,D.

3) Generate bootstrap population values as

Y ∗di
ind.∼ N(x′diβ̂ββ +u∗d, σ̂

2
e ), i = 1, . . . ,Nd, d = 1, . . . ,D.

Although normality does not really hold because Ydi are binary, a bootstrap procedure
in which the bootstrap population values Y ∗di are generated from a logistic GLMM
was also implemented and the simulation results were practically identical to those
obtained from this bootstrap procedure.

4) Calculate the true bootstrap proportions of interest

P∗d =
1

Nd

Nd

∑
i=1

Y ∗di, d = 1, . . . ,D.

5) Select the part of the bootstrap population corresponding to the sample units, called
bootstrap sample data: {(xdi,Y ∗di); i ∈ sd, d = 1, . . . ,D}. Now fit the LMM model (1)
to the bootstrap sample data, obtaining bootstrap model parameter estimates β̂ββ

∗
, σ̂2∗

u ,
σ̂2∗

e , and predicted random effects û∗d , d = 1, . . . ,D. Calculate the EBLUPs P̂EBLUP∗
d

using the bootstrap sample data, as

P̂EBLUP∗
d =

1
Nd

(
∑
i∈sd

Y ∗di + ∑
i∈s̄d

Ŷ ∗di

)
, d = 1, . . . ,D,

where Ŷ ∗di = x′diβ̂ββ
∗
+ û∗d is the predicted value of Y ∗di obtained by fitting the LMM to

the bootstrap sample data. Calculate also the benchmarked EBLUPs P̂BM∗
d as

P̂BM∗
d = P̂EBLUP∗

d
Ŷ GREG

∑
D
d=1 NdP̂EBLUP∗

d
,

6) Repeat Steps 2–5 for b = 1, . . . ,B, where B is large. Let P∗(b)d be the true proportion,

P̂EBLUP∗(b)
d be the EBLUP and P̂BM∗(b)

d be the benchmarked EBLUP obtained in b-th
bootstrap replicate. The parametric bootstrap (PB) estimator of the model MSE of the
EBLUP, P̂EBLUP

d , is given by

msePB(P̂EBLUP
d ) =

1
B

B

∑
b=1

(
P̂EBLUP∗(b)

d −P∗(b)d

)2
. (4)

Similarly, for the benchmarked EBLUP P̂BM
d , the PB MSE estimator is given by

msePB(P̂BM
d ) =

1
B

B

∑
b=1

(
P̂BM∗(b)

d −P∗(b)d

)2
. (5)
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Quantile-bootstrap CIs for Pd can also be constructed using the previous parametric boot-
strap approach. These intervals are based on selecting the α/2 and 1−α/2 quantiles P̂BM

d(α/2)

and P̂BM
d(1−α/2) from the set of bootstrap estimates {P̂BM∗(b)

d ;b = 1, . . . ,B}. The (1−α)%
quantile-bootstrap CI for Pd based on the benchmarked EBLUP estimates is then

CIPB
1−α(Pd) =

[
P̂BM

d(α/2), P̂
BM
d(1−α/2)

]
.

Analogous CIs can be computed based on the unadjusted EBLUPs. Chatterjee, Lahiri and
Li (2008) obtained similar intervals for the case of continuous target variable and showed
that the coverage is correct up to terms of order D−1. However, the number of bootstrap
replicates needed to approximate correctly the 0.025 and 0.975 quantiles if α = 0.05 is really
large and computational time overflows. In our simulation results with B = 500, coverage
of quantile-bootstrap CIs intervals was poor and, for that reason, results are not shown.

4 Nonparametric bootstrap estimator of the design MSE
The design MSE is obtained by averaging the squared errors over the possible samples
drawn from a fixed population using the considered sampling design. Here we propose a
nonparametric bootstrap for the estimation of this design MSE. This procedure follows the
steps below:

1) Replicate each data point (xdi,Ydi) from the sample a number of times equal to the
rounded calibrated sampling weight wdi. This leads to the bootstrap population data
set {(x∗di,Y

∗
di); i = 1, . . . , N̂d, d = 1, . . . ,D}.

2) Calculate the true bootstrap proportions of interest

P∗d =
1

N̂d

N̂d

∑
i=1

Y ∗di, d = 1, . . . ,D.

3) Draw a simple random sample (SRS) s∗d from each district d. Select the corresponding
bootstrap elements for that sample: {(x∗di,Y

∗
di); i ∈ s∗d, d = 1, . . . ,D}. Now fit the

LMM model (1) to these bootstrap sample data, obtaining bootstrap model parameter
estimates β̂ββ

∗
, σ̂2∗

u , σ̂2∗
e , and predicted random effects û∗d , d = 1, . . . ,D. Calculate the

EBLUPs P̂EBLUP∗
d using the bootstrap sample data,

P̂EBLUP∗
d =

1
Nd

∑
i∈s∗d

Y ∗di + ∑
i∈s̄∗d

Ŷ ∗di

 , d = 1, . . . ,D,

where Ŷ ∗di = x∗di
′
β̂ββ
∗
+ û∗d is the predicted value of Y ∗di obtained by fitting the LMM.

Calculate also the benchmarked EBLUPs P̂BM∗
d as

P̂BM∗
d = P̂EBLUP∗

d
Ŷ GREG

∑
D
d=1 N̂dP̂EBLUP∗

d
,
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4) Repeat Step 3 for b = 1, . . . ,B, where B is large. Note that here the true bootstrap
proportions P∗d are constant over bootstrap replicates because the bootstrap population
in Step 1 is fixed. Let P̂EBLUP∗(b)

d be the EBLUP and P̂BM∗(b)
d be the benchmarked

EBLUP obtained in b-th bootstrap replicate. A nonparametric bootstrap estimator of
the design MSE of P̂EBLUP

d is given by

m̃seNPB(P̂EBLUP
d ) =

1
B

B

∑
b=1

(
P̂EBLUP∗(b)

d −P∗d
)2

.

Note that in Step 1, data are replicated to get the bootstrap population and, in Step 3,
a SRS without replacement is drawn from the bootstrap population. This is equivalent
to drawing a SRS with replacement of size nd from the original data. However, an
estimator based on a SRS with replacement of size nd is less efficient than the same
estimator based on a SRS of the same size, but obtained without replacement. In this
case, the NPB estimator is actually approximating the design MSE of an estimator
based on a SRS with replacement of size nd , which has smaller effective sample size
than the desired sample size nd if the sampling was without replacement. Thus, for
areas with non negligible sampling fraction fd = nd/Nd , the NPB estimator will be
overestimating the true MSE. For this reason, we correct the NPB estimator using the
“finite population correction factor” fd = nd/Nd . Hence, we will finally consider the
following corrected nonparametric bootstrap (NPB) estimator given by

mseNPB(P̂EBLUP
d ) = (1− fd) m̃seNPB(P̂EBLUP

d ).

Similarly, for the benchmarked EBLUP P̂BM
d , we consider the NPB estimator of the

design MSE given by

mseNPB(P̂BM
d ) = (1− fd)

1
B

B

∑
b=1

(
P̂BM∗(b)

d −P∗d
)2

. (6)

In contrast with the parametric bootstrap of Section 3, which generates new population
data in each bootstrap replicate, note that this nonparametric bootstrap procedure is based
only on the original sample data, which is simply replicated using the sampling weights.
In fact, the average over the bootstrap replicates in (6) actually estimates the average over
the possible subsamples sd from district d, which are all based on the same set of nd units.
Thus, the nonparametric bootstrap MSE estimate (6) for district d might be inefficient for a
district with small sample size nd .

5 Mixed bootstrap estimators of design MSE
The nonparametric bootstrap MSE estimator (6) proposed in Section 4 depends on the
domain-specific sample data and is thus “direct”. Then, it becomes highly inefficient for
domains with small sample sizes, see Figure 20. On the other hand, the parametric boot-
strap MSE estimator (5) of Section 3 is unbiased for the model MSE, but it becomes too
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stable (e.g. biased) as an estimator of the design MSE. If the model is correct, it is design-
unbiased for the design MSE when averaging over a large number of domains, but not in
each particular one. To balance the design-bias of the parametric bootstrap MSE estimator
for the large areas and the instability of the nonparametric bootstrap for the smaller areas,
we propose to mix them by making a convex linear combination of the two. In a domain
with large sample size, the mixed estimator automatically approaches the nonparametric
bootstrap MSE estimator, and in a domain with a small sample size it gets closer to the
parametric bootstrap MSE estimator. The idea is to “borrow strength” from other domains
when estimating the design MSE in a given domain, similarly as we do for estimation of the
domain proportions. As weight for the combination, we consider the same domain-specific
weight γd used to obtain the EBLUP as a combination of the direct survey-regression esti-
mator and the synthetic regression estimator. Thus, the mixed bootstrap (MB) estimator of
the design MSE of the benchmarked EBLUP for domain d is obtained from (6) and (5) as

mseMB(P̂BM
d ) = γ̂d mseNPB(P̂BM

d )+(1− γ̂d)msePB(P̂BM
d ), (7)

where γ̂d = σ̂2
u/(σ̂

2
u + σ̂2

e /nd). For the unadjusted EBLUP, the MB estimator of the design
MSE is obtained analogously. The only prior drawback of this mixed MSE estimator is that
is requires to run both bootstrap procedures for each area, which makes it computationally
slower.

Another way to “borrow strength” is to consider a mixed estimator based on a paramet-
ric bootstrap for estimating directly the design MSE. In the nonparametric bootstrap, the
population is generated by replicating the sample. This method is not using the whole set of
population values of auxiliary variables, which are actually available. However, it estimates
the design-MSE because it is averaging over all the possible samples drawn from a fixed
population. On the other hand, the parametric bootstrap uses the whole set of population
values of auxiliary variables, but it really estimates the model MSE, because the expectation
is approximated by the average over all simulated populations from the model. Here we
propose a completely new bootstrap procedure that uses the stability provided by the model
to estimate directly the design MSE instead of the model MSE. In this bootstrap procedure,
the fixed population is generated from the fitted model to the original sample (conditioning
on the observed sample data), and then different samples are drawn from this fixed popula-
tion to approximate by Monte Carlo the expectation under the sampling design. However,
if the model is not perfectly correct, the population generated from the model is not exactly
equal to the true population and therefore true proportions are not actually available in this
bootstrap procedure. We propose to estimate the true values with the EBLUPs for domains
with small sample size, and with the “direct” estimators obtained by fitting the LMM with
fixed domain effects, denoted P̂FIX

d , for the domains with large sample size. Thus, the para-
metric design bootstrap (PDB) estimator of the design MSE of the EBLUP is obtained as
follows:

1) Fit the LMM model (1) to the available sample data {(xdi,Ydi); i ∈ sd, d = 1, . . . ,D},
obtaining model parameter estimates β̂ββ and σ̂2

e , and estimated random effects ûd .

2) Generate a bootstrap population from the fitted model as

Y ∗di
ind.∼ N(x′diβ̂ββ + ûd, σ̂

2
e ), i = 1, . . . ,Nd, d = 1, . . . ,D.
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3) Draw a simple random sample s∗d from each district d. Select the corresponding boot-
strap elements for that sample: {(x∗di,Y

∗
di); i ∈ s∗d, d = 1, . . . ,D}. Now fit the LMM

model (1) to these bootstrap sample data, obtaining bootstrap model parameter es-
timates β̂ββ

∗
, σ̂2∗

u , σ̂2∗
e , and predicted random effects û∗d , d = 1, . . . ,D. Calculate the

EBLUPs P̂EBLUP∗
d using the bootstrap sample data,

P̂EBLUP∗
d =

1
Nd

∑
i∈s∗d

Y ∗di + ∑
i∈s̄∗d

Ŷ ∗di

 , d = 1, . . . ,D,

where Ŷ ∗di = x∗di
′
β̂ββ
∗
+ û∗d is the predicted value of Y ∗di obtained by fitting the LMM.

Calculate also the benchmarked EBLUPs P̂BM∗
d as

P̂BM∗
d = P̂EBLUP∗

d
Ŷ GREG

∑
D
d=1 NdP̂EBLUP∗

d
,

4) Repeat Step 3 for b = 1, . . . ,B, where B is large. Let P̂EBLUP∗(b)
d be the EBLUP and

P̂BM∗(b)
d be the benchmarked EBLUP obtained in b-th bootstrap replicate. The para-

metric design bootstrap (PDB) estimator of the design MSE of P̂EBLUP
d is given by

msePDB(P̂EBLUP
d ) = γ̂d

1
B

B

∑
b=1

(
P̂EBLUP∗(b)

d − P̂FIX
d

)2

+ (1− γ̂d)
1
B

B

∑
b=1

(
P̂EBLUP∗(b)

d − P̂EBLUP
d

)2
,

where P̂FIX
d is the EBLUP obtained by fitting model (1), but considering domain ef-

fects ud as fixed instead of random, that is, considering the domain variable (district)
as an additional (fixed) factor in the model. Since domain effects are estimated with
the domain observations only, this estimator is “direct”, but uses the regression to
improve its efficiency, so it is actually a kind of GREG estimator. Similarly, for the
benchmarked EBLUP P̂BM

d , the PDB estimator of the design MSE is given by

msePDB(P̂BM
d ) = γ̂d

1
B

B

∑
b=1

(
P̂BM∗(b)

d − P̂FIX
d

)2

+ (1− γ̂d)
1
B

B

∑
b=1

(
P̂BM∗(b)

d − P̂EBLUP
d

)2
.

6 Simulation studies for the parametric bootstrap MSE
A model-based simulation study was performed to analyze the performance of (4) and (5)
as estimators of the model MSEs of the EBLUP and the benchmarked EBLUP, and also to
analyze the actual coverage of 95% normality-based confidence intervals. Since the target
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variable is actually binary, in this simulation study we consider that the population data are
generated by the GLMM

Ydi|vd ∼ Bern(pdi), log
(

pdi

1− pdi

)
= x′diααα + vd

vd
iid∼ N(0,σ2

v ). (8)

In this way, the true MSE in this simulation study will incorporate any potential bias due to
considering a LMM instead of a GLMM in the parametric bootstrap procedure.

To make the simulation study realistic, we consider as true values of the model parame-
ters ααα and σ2

v in (8), those obtained by fitting the model (8) to the data from the Structural
Survey. Thus, using those fitted values as the true model parameters, first we generate
L = 10,000 Monte Carlo populations from model (8) to approximate the true model MSE
with good precision. Let P(`)

d be the true proportion for d-th area in `-th Monte Carlo pop-
ulation. From each generated population, we draw a stratified sample with districts acting
as strata and simple random sampling (SRS) within each district. The district sample sizes
were taken as in the simulation studies in the previous project, namely nd = 60+5(k−1),
k = 1, . . . ,D with D = 132. The sample units are kept fixed over the L Monte Carlo repli-
cates because it is a purely model-based simulation study. Let P̂EBLUP(`)

d and P̂BM(`)
d be the

EBLUP and benchmarked EBLUP obtained using the sample data from `-th population. For
the benchmarked EBLUPs, the true model MSEs were approximated as

MSEm(P̂BM
d ) = L−1

L

∑
`=1

(P̂BM(`)
d −P(`)

d )2, d = 1, . . . ,D.

The true model MSEs of the unadjusted EBLUPs for each district are approximated simi-
larly, replacing P̂BM(`)

d by P̂EBLUP(`)
d .

Now to approximate the expected value of the parametric bootstrap MSE estimates and
to obtain the actual coverage of the 95% CIs for Pd , the simulation study was repeated
generating L = 500 Monte Carlo populations. With the sample data from `-th generated
population, we carried out the parametric bootstrap procedure of Section 3 with number of
bootstrap replicates B = 500, to obtain parametric bootstrap MSE estimates for the bench-
marked estimators denoted by mse(`)PB(P̂

BM
d ). Using these MSE estimates, 95% normality-

based confidence intervals for Pd were calculated as follows

CI1−α(P
(`)
d ) =

[
P̂BM(`)

d − zα/2

√
mse(`)PB(P̂

BM
d ), P̂BM(`)

d + zα/2

√
mse(`)PB(P̂

BM
d )

]
, d = 1, . . . ,D,

with α = 0.05. This was repeated for `= 1, . . . ,L. Then, the expected value of the MSE es-
timates is approximated empirically by averaging the bootstrap MSE estimates over Monte
Carlo replicates as

L−1
L

∑
`=1

mse(`)PB(P̂
BM
d ), d = 1, . . . ,D.

Finally, the coverage rate (CR) of the 95% normality-based CIs was computed as

CR = L−1
L

∑
`=1

I
{

P(`)
d ∈ CI1−α(P

(`)
d )
}
,

10



where I{condition} = 1 if condition is true and 0 otherwise. If the CIs perform well, CR
should be approximately 1−α . For the unadjusted EBLUPs, means of MSE estimates
mse(`)PB(P̂

EBLUP
d ) over the L Monte Carlo replicates and coverage rates of CIs are computed

similarly.
True model MSEs for the benchmarked EBLUPs (labeled TRUE) and expected values

of the parametric bootstrap MSE estimates (labeled BOOTSTRAP) are depicted in Figure
1 for each district in the x axis, with districts sorted by decreasing sample sizes (labels in
the x axis are sample sizes). This figure shows that the parametric bootstrap MSE estimates
track rather well the true model MSEs, as expected from a bootstrap procedure. For the
unadjusted EBLUPs, the plot is not shown but the parametric bootstrap procedure performs
very similarly. Coverage rates of the 95% CIs for each district proportion Pd are given in
Figure 2. Note that the number of simulations L = 500 and of bootstrap replicates B = 500
might not be large enough for approximating correctly the true coverage rates. Still, Figure
2 shows that for all districts, CRs are never far from the nominal level 1−α = 0.95 (dashed
line), with CRs roughly between 0.88 and 0.99 for all districts. Moreover, the average CR
over the districts is 0.943, which indicates a good performance of the model-based CIs.

A new simulation study was carried out under the design-based setup to analyze whether
the parametric bootstrap MSE is also an acceptable estimator of the design MSE, MSEπ(P̂BM

d ),
and to analyze the actual design coverage of the 95% normality-based confidence intervals
for Pd , d = 1, . . . ,D. For this purposes, we considered the Structural Survey data for the
D = 132 districts with sample sizes larger than 300 as the (fixed) true population and sam-
ples were drawn from it. To approximate empirically the true design MSEs, a first simulation
study was performed drawing L= 10,000 samples out of the population. The district sample
sizes were taken as in the model-based simulation study described above. Let Pd be the true
proportion for district d, and P̂EBLUP(`)

d and P̂BM(`)
d be the estimates obtained using the data

from `-th sample. The true design MSEs of the benchmarked EBLUPs were approximated
as

MSEπ(P̂BM
d ) = L−1

L

∑
`=1

(P̂BM(`)
d −Pd)

2, d = 1, . . . ,D.

The true design MSEs of the unadjusted EBLUPs P̂BM
d for each district d were approximated

similarly.
Now to estimate the expected value of the parametric bootstrap MSE estimates under the

design-based approach, the simulation study was repeated drawing now L = 500 samples
from the given population. With the data from `-th sample, we carried out the parametric
bootstrap procedure with number of bootstrap replicates B = 500, obtaining the parametric
bootstrap MSE estimate of the benchmarked estimate mse(`)PB(P̂

BM
d ). With the same sample,

CIs were computed as follows

CI(`)1−α
(Pd) =

[
P̂BM(`)

d − zα/2

√
mse(`)PB(P̂

BM
d ), P̂BM(`)

d + zα/2

√
mse(`)PB(P̂

BM
d )

]
,

This was repeated for each sample `= 1, . . . ,L. Then, we averaged the bootstrap estimates
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over Monte Carlo samples as

L−1
L

∑
`=1

mse(`)PB(P̂
BM
d ), d = 1, . . . ,D.

Similarly as before, to check the performance of the CIs we obtain CRs as

CR = L−1
L

∑
`=1

I
{

Pd ∈ CI(`)1−α
(Pd)

}
,

Analogous formulas are applied for the unadjusted EBLUPs.
The parametric bootstrap procedure estimates the model MSE and not the design MSE.

However, if the model is approximately correct, the average of these MSEs over a large
number of areas should be similar, see Appendix 1 of report on Phase II of previous contract.
Thus, the parametric bootstrap estimate is expected to estimate correctly the design MSE in
average but not in each particular area.

Figure 3 plots the true design MSE together with the parametric bootstrap MSE estimates
for each district, with districts sorted by decreasing sample sizes. Recall that to approximate
well the true MSEs, only districts with “population sizes” larger than 300 are considered
in the fixed “population”. Recall that in the true Swiss population, the smallest district
population size is 1839. Figure 3 shows that the parametric bootstrap model MSE estimates
follow the trend of the design MSEs. Figure 4 shows exactly the same plot but with the scale
of the y-axis equal to the one in Figure 2 of the report of Phase II of the previous contract.
In that figure the true MSEs for the smallest districts were much larger than the parametric
bootstrap MSE estimates. According to Figure 4, this is not happening anymore, which
means that the problem was in the true MSEs and not in the estimates. True MSEs are now
better approximated because the smallest district population size is larger than 300.

Although CIs are designed to have the nominal coverage under the model distribution
(and not under the design), however design CRs of the CIs, plotted in Figure 5, are close
to the nominal level 0.95 for most of the districts. The average coverage rate is 0.94.
Additionally, Figure 6 plots averages of the CRs for districts with similar sample sizes;
specifically, we have averaged the CRs for the districts with sample sizes in the classes
800−700,700−600, . . . ,100−60. See that these averages are approximately in the inter-
val (0.89,0.99). Thus, average design CRs are not far from the nominal level 0.95.

The poor design CR of the confidence intervals for some districts shown in Figure 5
could be due to a bias in the estimation of the design MSE for those domains. To find out if
this is true, we calculated the design CRs of the confidence intervals based on the true design
MSEs. Results are shown in Figure 7. See that the coverage of these intervals is around the
nominal level 1−α = 0.95. This indicates that the poor coverage of the intervals for some
domains is due to a biased design MSE estimator for those domains. Section 7 studies the
design-based performance of the mixed estimators of the design MSE proposed in Section
5. It also shows the design coverage of the CIs based on these MSE estimates.
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Figure 1: True model MSE (labeled TRUE) of the benchmarked EBLUP based on the LMM
and parametric bootstrap estimator (labeled BOOTSTRAP). Districts sorted by decreasing
sample sizes.
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Figure 2: Model-based coverage rates of 95% normality-based CIs using the parametric
bootstrap MSE estimator (Average: 0.943). Nominal level 0.95 indicated by the dashed
line. Districts sorted by decreasing sample sizes.
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Figure 3: True design MSE (labeled TRUE) of the benchmarked EBLUP based on the LMM
and parametric bootstrap estimator (labeled BOOTSTRAP). Districts sorted by decreasing
sample sizes.
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Figure 4: True design MSE (labeled TRUE) of the benchmarked EBLUP based on the LMM
and parametric bootstrap estimator (labeled BOOTSTRAP). Districts sorted by decreasing
sample sizes. Limits of y-axis as in Report on Phase II of previous contract.
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Figure 5: Design-based coverage rates of 95% normality-based CIs using parametric boot-
strap MSE estimates (Average: 0.940). Nominal level 0.95 indicated by dashed line. Dis-
tricts sorted by decreasing sample sizes.
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7 Design-based simulation studies for mixed estimators of
design MSE

A design-based simulation study was carried out exactly the same as in the one described in
Section 6, to analyze the design-based performance of the mixed bootstrap MSE estimators
introduced in Section 5 and the coverage of the CIs based on these MSE estimators.

Thus, the true (fixed) population is taken as the Structural Survey data for the D = 132
districts with sample sizes larger than 300 and samples were drawn from it. To approximate
empirically the true design MSEs, namely MSEπ(P̂BM

d ), a first simulation study was per-
formed drawing L = 10,000 samples out of the population. The district sample sizes were
taken as in the simulation studies described above. Let Pd be the true proportion for district
d, and P̂EBLUP(`)

d and P̂BM(`)
d be the estimates obtained using the data from `-th sample.

To estimate the expected value of the mixed bootstrap MSE estimates under the design-
based approach, the simulation study was repeated drawing now L = 500 samples from
the given population (L is small due to time limitation). With the data from `-th sample,
we carried out the parametric and the non-parametric bootstrap procedures with number of
bootstrap replicates B = 500 each one, obtaining the mixed bootstrap MSE estimate of the
benchmarked EBLUP given in (7), denoted here mse(`)MB(P̂

BM
d ). With the same sample, CIs

based on the MB estimates were computed as follows

CI(`)MB,1−α
(Pd) =

[
P̂BM(`)

d − zα/2

√
mse(`)MB(P̂

BM
d ), P̂BM(`)

d + zα/2

√
mse(`)MB(P̂

BM
d )

]
,

This calculation was repeated for each sample `= 1, . . . ,L. Then, we averaged the bootstrap
estimates over Monte Carlo samples as

L−1
L

∑
`=1

mse(`)MB(P̂
BM
d ), d = 1, . . . ,D.

Similarly as before, to check the performance of the CIs we obtain CRs as

CRMB = L−1
L

∑
`=1

I
{

Pd ∈ CI(`)MB,1−α
(Pd)

}
,

Analogous formulas are applied for the unadjusted EBLUPs.
Figure 8 shows the expected values of the estimated MSEs using the NPB estimator

compared to true design MSEs, while Figure 9 shows the analogous plot for the MB es-
timates of the design MSEs. Figure 8 shows that the nonparametric bootstrap tracks the
pattern of the true design MSE with some overestimation for most of the districts, but this
overestimation becomes more serious for the districts of smaller sample sizes (on the right
side). Figure 9 shows that the new MB estimates perform better in average, reducing the
overestimation in the smaller districts. Figure 10 shows the design-based coverage rates
of the confidence intervals based on the MB estimate of the design MSE. Again, average
coverage rate is correct (0.953), but for some districts (11 in total) the design coverage falls
between 0.6 and 0.8.
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The new PDB procedure described in Section 5 for estimation of the design MSE was
applied with B = 500 and its performance was studied with L = 500 Monte Carlo samples.
Expected values of design MSE estimates and CRs of confidence intervals were approxi-
mated similarly as for the MB estimators.

Figure 11 shows the expected values of the PDB estimates and the true design MSEs.
Despite the slight overestimation (which is less serious than underestimation), see that these
MSE estimates are tracking very well the peaks of the design MSEs for practically all the
districts. The PDB estimates perform in average much better than the parametric bootstrap
MSEs as estimates of the design MSE, compare with Figure 3. It performs even better than
the MB estimates shown in Figure 9. Figure 12 shows the coverage rates of confidence
intervals based on these MSE estimates. Average coverage rate is in this case 0.89, but
observe that the design CRs improves as long as the district sample size increases. Coverage
is likely to improve for larger B and L, since the slight overestimation of the design MSEs
should provide also slight overcoverage rather than undercoverage.

The performance of each estimator of the design MSE, namely PB, NPB, MB and PDB,
has been summarized by averaging across districts. Averages across areas of absolute rel-
ative bias (ARB) and coefficient of variation (CV) of each MSE estimator, together with
coverage rate (CR) and expected length (EL) of the corresponding 95% confidence inter-
vals, for the benchmarked estimators P̂BM

d , are computed respectively as:

ARB =
1
D

D

∑
d=1

∣∣∣ 1
L ∑

L
`=1 mse(`)(P̂BM

d )−MSE(P̂BM
d )

∣∣∣
MSE(P̂BM

d )
,

CV =
1
D

D

∑
d=1

√
1
L ∑

L
`=1
[
mse(`)(P̂BM

d )− 1
L ∑

L
`=1 mse(`)(P̂BM

d )
]2

1
L ∑

L
`=1 mse(`)(P̂BM

d )
,

CR =
1
D

D

∑
d=1

1
L

L

∑
`=1

I
{

Pd ∈ CI(`)1−α
(Pd)

}
,

EL =
1
D

D

∑
d=1

1
L

L

∑
`=1

2zα/2

√
mse(`)(P̂BM

d ).

Since underestimation of error is more serious than overestimation, we also wanted to see
which part of bias is due to each type of error. For this reason, we have computed the average
across districts of the positive part of the RB as follows

PRB =
1
D

D

∑
d=1

max
(

0, 1
L ∑

L
`=1 mse(`)(P̂BM

d )−MSE(P̂BM
d )

)
MSE(P̂BM

d )
.

Note that the negative part is the remainder part of the ARB. Table 1 reports these sum-
marized results. This table indicates that the PDB estimator of the MSE is the less biased
among the considered MSE estimators, with practically no underestimation. However, it
turns out to be more unstable than the other MSE estimators, which might be the reason
for the poorer coverage rate. The instability might arise from the fact that it uses a kind of
direct estimator of the area proportion, the one based on the model with fixed district effects
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Figure 7: Design-based coverage rates of 95% normality-based CIs based on the true design
MSE. Districts sorted by decreasing sample sizes.
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Figure 8: True design MSE (labeled True) of the benchmarked EBLUP based on the LMM
and NPB estimator (labeled NPB). Districts sorted by decreasing sample sizes.
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Figure 9: True design MSE (labeled True) of the benchmarked EBLUP based on the LMM
and MB estimator (MB). Districts sorted by decreasing sample sizes.
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Figure 10: Design-based coverage rates of 95% normality-based CIs using the MB MSE
estimator (Average: 0.953). Nominal level 0.95 indicated by the dashed line. Districts
sorted by decreasing sample sizes.
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P̂FIX
d . The MB estimator is slightly more biased but much less unstable, so it can represent

a good compromise between all the estimators. The PB estimator performs acceptably well
in average but not for each district, as we have seen in the more detailed plots.

Table 1: Averages across areas of ARB and of CV of PB, NPB, MB and PDB estimators
of the MSE of the benchmarked estimators P̂BM

d , average CR and EL of corresponding 95%
confidence intervals, in percentage.

MSE estimator ARB(PRB) (%) CV (%) CR (%) EL (%)

PB 62.1 (49.7) 16.1 94.5 3.7

NPB 136.7 (129.9) 53.4 94.6 4.5

MB 76.6 (67.5) 24.8 95.3 3.9

PDB 62.0 (60.9) 103.9 88.2 3.8

8 MSE and confidence intervals using GREG estimators
GREG weights wdi are obtained by calibration and then typically adjusted for non response.
This means that GREG weights are random and induce some uncertainty in the final GREG
estimator. Here we put ourselves in an ideal situation in which GREG weights are fixed.
This means that the true variances of GREG estimators will be underestimated to some
extent, and coverage rates will be approximated with much better precision than they will be
in practice, where weights are actually random. To calculate the MSE of GREG estimators
with fixed weights in our simulations, first note that the considered GREG estimator is a
ratio estimator of the form P̂d = Ŷd/N̂d , where

Ŷd = ∑
i∈sd

wdiYdi, N̂d = ∑
i∈sd

wdi.

Then, by the Taylor linearization method, an approximation to the MSE of the above GREG
estimator P̂d is given by

mseπ(P̂d) =
1

N̂2
d

[
P̂2

d vπ(N̂d)+ vπ(Ŷd)−2P̂dcovπ(N̂d,Ŷd)
]
, (9)

where vπ(N̂d) and vπ(Ŷd) are the estimated design variances of N̂d and Ŷd respectively, and
covπ(N̂d,Ŷd) is the estimated design covariance between N̂d and Ŷd . In our simulation stud-
ies, we have considered independent simple random samples within each district. In that
case, the true inclusion probabilities are given by πdi = nd/Nd . Applying the approxima-
tion πdi,d j = πdiπd j for the second-order inclusion probabilities, an approximation to the
estimated design variances of N̂d and Ŷd are respectively given by

vπ(N̂d) =

(
1− nd

Nd

)
∑
i∈sd

w2
di, vπ(Ŷd) =

(
1− nd

Nd

)
∑
i∈sd

w2
diY

2
di.
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Figure 11: True design MSE (labeled True) of the benchmarked EBLUP based on the LMM
and PDB estimator (labeled PDB). Districts sorted by decreasing sample sizes.
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Figure 12: Design-based coverage rates of 95% normality-based CIs using the PDB MSE
estimator (Average: 0.890). Nominal level 0.95 indicated by the dashed line. Districts sorted
by decreasing sample sizes.
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Similarly, an approximation to the estimated design covariance between N̂d and Ŷd is given
by

covπ(N̂d,Ŷd) =

(
1− nd

Nd

)
∑
i∈sd

w2
diYdi.

Using the above MSE estimator, a 1−α confidence interval for Pd based on the GREG
estimator is given by

CI(`)GREG,1−α
(Pd) =

[
P̂d− zα/2

√
mseπ(P̂d), P̂d + zα/2

√
mseπ(P̂d)

]
,

Similarly as in the previous sections, a design-based simulation study was carried out to
analyze the performance of the MSE estimator and the coverage rates of CIs based on the
GREG with fixed weights. Then, for each Monte Carlo sample ` = 1, . . . ,L, we computed
the GREG estimates and the corresponding confidence intervals. Finally, the CRs were
approximated as

CRGREG = L−1
L

∑
`=1

I
{

Pd ∈ CI(`)GREG,1−α
(Pd)

}
.

Results are shown in Figures 13 and 14. See that the MSE estimator mseπ(P̂d) obtained
with fixed weights performs very well and the coverage rates of the confidence intervals are
very close to 0.95. On the other hand, the average length of those intervals is 9.3. This
means that they are double as wider than the intervals obtained with the benchmarked LMM
and any of our MSE estimators, see Table 1. The larger length of GREG-based CIs can be
more clearly seen in the results with the true data shown in Figure 28 from Section 9.

9 Results for the STATPOP data set
The LMM that was selected in previous work for estimation of activity in Swiss districts
contains all the auxiliary variables listed in Table 2 of Appendix 1. More concretely, the
model contains random district effects and fixed effects for all the categories of all other
variables in Table 2, leaving out the first of them as base reference and including an intercept.
Fixed effects were also included for the interactions between gender and age group, and
between gender and civil status. The estimated regression coefficients are listed in
Table 2 of Appendix 2 and we can see that all of these variables are strongly significant and
the signs of the coefficients are somehow intuitive. The selected LMM model was checked
by simulation studies and also through model diagnostics, and results indicated that this
model is relatively good in terms of predicting activity in the Swiss districts.

Table 3 in Appendix 3 lists, for each district within each stratum, the district sample
sizes, the different estimates of the percentages of active people (GREGs, EBLUPs based
on the LMM and benchmarked EBLUPs) with their estimated percent RRMSEs obtained
using the PB, MB and PDB procedures. These results can be better analyzed with the
aid of figures. Figure 15 plots the EBLUPs based on the LMM of the district percentages
of active people (labeled LMM), together with the benchmarked EBLUPs (labeled LMM
(BM)) for each district. See that the two sets of estimates are very close to each other, with
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Figure 13: True design variance (labeled ”True”) of the GREG estimator and the variance
estimator V̂π(P̂d) (labeled ”Estimated”). Districts sorted by decreasing sample sizes.
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Figure 14: Coverage rates of 95% normality-based CIs of the GREG estimator. Average CR
over all districts is 0.935. Nominal level 0.95 indicated by the dashed line. Districts sorted
by decreasing sample sizes.
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the benchmarked estimates just slightly larger than the unadjusted EBLUPs. In fact, the
benchmarking adjustment turned out to be 1.0076, which means a very mild adjustment.

Figure 16 represents a line plot of the benchmarked EBLUPs against the GREG esti-
mates. Since the GREG estimators are approximately design-unbiased, a cloud of points all
above or below the line y = x would suggest a systematic design bias of the EBLUPs. This
does not seem to be the case because the points turn out to be around the line y = x, with
points distributed at both sides. The group of points that appear below the line close to the
top right corner indicate some deviation of the EBLUPs to the GREGs for those districts.
But note that these points correspond to large GREG estimates of the proportions of active
people. The points are a little further apart from the line because, according to the model,
which is supposed to fit well the data, these districts should not have such large proportions
of active people. Take into account that GREG estimates tend to vary more than they should
due to the small district sample sizes. Thus, the model is smoothing those more extreme
proportions and providing more reasonable estimates according to the model. In contrast,
the points with large GREG estimates that appear close to the line correspond to districts in
which the extreme GREG estimated proportions are explained by the considered auxiliary
variables in the LMM model.

Figure 17 gives a different display of the two sets of estimates, for each district in the x
axis. We can see that the estimates are practically the same for the large districts (on the left-
hand side of the plot), but for the districts with smaller sample sizes (on the right-hand side),
the two estimates present slight deviations. We know that for districts with small sample
sizes, the GREG estimators can be inefficient as shown in Phase I of the project. Thus, here
we consider the benchmarked EBLUPs as more reliable estimates.

Figure 18 plots the percent relative root MSE (RRMSE) estimates obtained by the pro-
posed parametric bootstrap procedure with B = 250 replicates, for the unadjusted EBLUPs
based on the LMM (labeled LMM) and the benchmarked EBLUPs (labeled LMM (BM)).
See that the estimated RRMSE is about 0.5% larger for the benchmarked estimates in the
districts with largest sample sizes, but the difference decreases with the district sample size.
Still, 0.5% is not a stricking RRMSE increase. The decrease of the differences when de-
creasing the district sample size seems to be an artifact of estimating the RRMSE which is
a ratio of the root MSE over the estimate. This decrease of the differences does not appear
when looking at the (non-relative) estimated MSEs, see Figure 19. Concerning computation
time, for the STATPOP data, the parametric bootstrap procedure with B = 250 replicates
takes less than 22 hours in a 3.40-3.90 gHz PC with an Intel Core i7 processor.

Figure 20 plots the estimated model MSE using the parametric bootstrap (PB) method
together with the estimated design MSE using the nonparametric bootstrap (NPB) proce-
dure, for the benchmarked EBLUPs based on the LMM. Note that these two estimates have
a different target parameter, which is the model MSE in the former and the design MSE
in the latter. Thus, in principle they do not need to agree. However, if they were good
estimates of their corresponding true MSEs and the model was correct, they should show
a similar pattern because they will be similar when averaging across a large number of
districts, see Appendix 1 in the report of Phase II of the previous contract. By the simu-
lation studies performed in Section 6, we know that the PB procedure estimates correctly
the model MSE for all districts and it also tracks acceptably well the design MSE for the
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districts with not so small sample sizes. In contrast, we have seen in the simulation study
that the NPB method overestimates the true design MSE, especially for districts with sample
sizes below nd = 300. This was corrected to some extent by the new mixed bootstrap (MB)
MSE estimates as shown in Figure 9 of Section 6. Figure 21 plots PB, MB and parametric
design-bootstrap (PDB) MSE estimates, for the benchmarked EBLUPs based on the LMM.
Comparing with the NPB MSE estimates from Figure 20, which reaches the value 0.20,
these three estimates show much more reasonable results, with MSE values not overcoming
the 0.08 level. We have seen in simulations that the PDB estimators track better the peaks of
the true design MSEs. Thus, if one is very averse to underestimation of the error, the PDB
estimates are recommended.

Figure 22 plots EBLUPs based on the LMM together with the 95% normality-based
confidence intervals based on the PB MSE estimates. Figure 23 shows the analogous plot
for the benchmarked EBLUPs. See that intervals are rather narrow for districts with larger
sample sizes (on the left-hand side) but the length increases as long as district sample sizes
decrease (on the right-hand side). Still, even for districts with small sample sizes, the lengths
of intervals are not large and allow to discriminate with statistical significance between the
proportions of active people in many districts. Point estimates together with lower limit
(LL) and upper limit (UL) of 95% normality-based confidence intervals obtained using the
EBLUPs as well as benchmarked EBLUPs are included for all districts in Table 4 of Ap-
pendix 4.

Similarly, Figure 24 plots EBLUPs based on the LMM together with the 95% normality-
based confidence intervals using the new MB MSE estimates. Figure 25 shows the analo-
gous plot for the benchmarked EBLUPs. As before, the intervals are rather narrow for
districts with larger sample sizes (on the left-hand side) but the length increases as long
as district sample sizes decrease (on the right-hand side). These intervals are just slightly
wider than those obtained using the PB procedure only for few of the smaller districts. The
estimated RRMSE obtained using the two type of MSE estimates, PB and MB, can be com-
pared in Table 3 of Appendix 3. Again, the point estimates together with lower limit (LL)
and upper limit (UL) of 95% normality-based confidence intervals obtained from EBLUPs
as well as benchmarked EBLUPs are included for all districts in Table 5 of Appendix 4.

Figures 26 and 27 show the analogous intervals obtained using the PDB MSE estimates.
These intervals are clearly wider for some of the districts with smaller sample sizes. Thus,
we expect these intervals to cover better the true values. Estimated RRMSEs based on PDB
estimates are also included in Table 3 of Appendix 3, and confidence intervals are reported
in Table 6 of Appendix 4.

Finally, Figure 28 shows GREG estimates together with 95% CIs. See that these inter-
vals are much wider than the corresponding ones obtained using the EBLUPs based on the
LMM shown in Figures 22 to 25. MSE estimates of GREG estimates are obtained using the
Taylor linearization method and considering that the inclusion probabilities in the Structural
Survey are equal to πdi = 1/wdi, that is, using (9) with estimated variances given by

vπ(N̂d) = ∑
i∈sd

wdi(wdi−1), vπ(Ŷd) = ∑
i∈sd

wdi(wdi−1)Y 2
di
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and estimated covariance given by

covπ(N̂d,Ŷd) = ∑
i∈sd

wdi(wdi−1)Ydi.
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Figure 15: Estimated district percentages of active people using the EBLUPs and the bench-
marked EBLUPs based on the LMM, with districts sorted by decreasing sample size.

10 Concluding remarks
Below we summarize the main achievements of all previous work together with those of
Phase I of this project:

• A rich and powerful regression model has been found for the activity in Switzerland.
This has an important economic value itself, since the model might help to understand
the factors explaining the activity, and this might provide relevant information for the
design of specific social policies or programs related with the labor force.

• Efficient estimators of the proportions of active people in the Swiss districts have been
found. The selected model explains a large part of the between-district variability in
the activity and therefore provides estimates of better quality than the current GREG
estimates. The design-based simulation with true data carried out in Phase I of the pre-
vious project showed that the estimates (EBLUPs) obtained from the selected model
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Figure 16: Estimated district percentages of actives using the benchmarked EBLUPs based
on the LMM model against GREG estimates.
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Figure 17: Estimated district percentages of actives using the GREG estimator and the
benchmarked EBLUPs based on the LMM, with districts sorted by decreasing sample size.
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Figure 18: Estimated percent RRMSEs obtained by parametric bootstrap for the unadjusted
EBLUPs (labeled LMM) and the benchmarked EBLUPs (labeled LMM(BM)) for each dis-
trict, with districts sorted by decreasing sample size.
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Figure 19: Difference between parametric bootstrap MSE estimates for the benchmarked
EBLUPs and the unadjusted EBLUPs for each district, with districts sorted by decreasing
sample size.
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Figure 20: Estimated model MSEs using the parametric bootstrap (labeled “Model MSE”)
together with estimated design MSE using the nonparametric bootstrap (labeled “Design
MSE”), for the benchmarked EBLUPs based on the LMM, with districts sorted by decreas-
ing sample size.

(LMM) achieve a significant reduction in relative error in comparison with the GREG
estimates for practically all districts, see Figure 57 of the report for Phase I of the pre-
vious project. In fact, when applying the new estimators to the read data, they achieve
an average RRMSE reduction of 49% with respect to GREG estimators without in-
creasing the district survey sample sizes. This is achieved thanks to a clever use of
the available auxiliary information to establish relationships among all the districts,
which helps to borrow strength from all districts when estimating in a particular one.

• Bootstrap procedures have been proposed for estimating both model MSE and design
MSE. In Section 6, we have seen that the parametric bootstrap procedure estimates
correctly the corresponding model MSE and it also gives acceptable estimates of the
design MSE in average, but it is not showing the real design MSE for a particular
district. The nonparametric bootstrap procedure for estimating the design MSE is
not bad for the districts with larger sample sizes (nd ≥ 300) but is very unstable for
districts with smaller sample sizes (nd < 300). We have proposed two completely new
bootstrap approaches for estimation of the design MSEs, namely MB and PDB, which
compensate in an automatic way the lack of stability of the nonparametric bootstrap
for the smallest districts and the overstability of the parametric bootstrap for the larger
districts. These estimates give very reasonable results for estimation of the design
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Figure 21: Estimated design MSEs using the parametric bootstrap (PB), the MB bootstrap
with correction factor on NPB part (MB) and the parametric design-bootstrap (PDB), for
the benchmarked EBLUPs based on the LMM, with districts sorted by decreasing sample
size.

MSEs, as shown in the simulation studies of Section 7.

• Based on the proposed bootstrap MSE estimates, we have constructed normality-
based confidence intervals. Despite of the limited number of simulations and boot-
strap replicates, under the model confidence intervals have actual coverage of the
target parameter rather close to the nominal level 1−α for all districts. In the design-
based simulations, coverage rates are not very accurate when considering the districts
separately, but the averages of the coverage rates over groups of districts with similar
sample sizes are also rather close to the nominal level.

• Using the whole STATPOP data and the Structural Survey data, we have computed
the EBLUPs together with their benchmarked counterparts, for which the estimated
district totals add up to the GREG estimate of the population total. The benchmarking
adjustment turns out to be very mild in the true data, although this mild adjustment
still leads to a small increase in RRMSE. Still, the estimated RRMSEs of the bench-
marked estimates remain below 3.5% even for the smallest districts, see Table 3 in
Appendix 3. Thus, the benchmarked EBLUPs represent more efficient alternatives
to the current GREG district estimates, their MSEs can be estimated using the MB
or PDB bootstrap methods described in Section 5 and normality-based confidence
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Figure 22: Estimated district percentages of active people using LMM model together with
95% CIs based on PB estimates of model MSE, with districts sorted by decreasing sample
size.
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Figure 23: Estimated district percentages of active people using benchmarked LMM model
together with 95% CIs based on PB estimates of model MSE, with districts sorted by de-
creasing sample size.

31



0.
55

0.
60

0.
65

0.
70

0.
75

Area (decreasing sample size)

%
 a

ct
iv

es
 w

ith
 9

5%
 C

Is

20786 4070 3220 2577 2063 1645 1210 1030 703 541 399 297 62

Figure 24: Estimated district percentages of active people using LMM model together with
95% CIs based on MB estimates of design MSE (with the new correction factor on NPB).
Districts sorted by decreasing sample size.
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Figure 25: Estimated district percentages of active people using benchmarked LMM model
together with 95% CIs based on MB estimates of design MSE (with the new correction
factor on NPB). Districts sorted by decreasing sample size.
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Figure 26: Estimated district percentages of active people using LMM model together with
95% CIs based on PDB estimates of design MSE. Districts sorted by decreasing sample
size.
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Figure 27: Estimated district percentages of active people using benchmarked LMM model
together with 95% CIs based on PDB estimates of design MSE. Districts sorted by decreas-
ing sample size.
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Figure 28: Estimated district percentages of active people using GREG together with 95%
CIs. Districts sorted by decreasing sample size.
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intervals can be constructed using those estimated MSEs.

• Additionally, we have presented the results of a simulation study for the estimated
MSE of GREG estimator and the coverage rates of confidence intervals obtained from
GREG estimates. We have seen that the Taylor linearization MSE estimator performs
well and the coverage rate of the confidence intervals is around the nominal value
0.95. Nevertheless, as we have already seen, GREG estimators are less efficient than
the proposed EBLUP based on LMM. Moreover, the CIs obtained using the GREG
estimates are at least double wider than those obtained from the EBLUPs based on
LMM model. This is more explicitly seen in Figure 28 showing the CIs obtained
from GREG estimates using the Structural survey data.
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Appendix 1: Variables included in the selected LMM

Table 2: Variables included in selected LMM
active 1=active 0=inactive
district there are 147 of them
Strata1 0=Strata with large sampling weight median, 1=otherwise

District1724 1=District nr 1724 / 0=otherwise
age group 15, [16,20), [20,60), [60,64), 64, ≥ 65

gender male (1) / female (2)
civil status 1 = single, unmarried, 2 = married, in a registered partnership,

3 = widow/er, 4 = divorced, partnership dissolved
nationality Not swiss (1) / Swiss (2)

secondary residence no (1) / yes (2)
Household Size 1, 2, [3,5], [6,10] >10

Income unknown (In OASI = no), (0,12000], (12000,24000], (24000,48000],
(48000,72000], (72000,96000], (96000,120000], > 120000

OASItri 1 = in OASI only Jan-March, 0 = otherwise
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Appendix 2: Fitted regression for Structural Survey

Table 2: Model fitting results for LMM
Variable Value Std.Error DF t-value p-value
(Intercept) 0.1442500 0.0070170 285837 20.55713 0.0000***
Strata1=1 -0.0070059 0.0019959 144 -3.51006 0.0006***
District1724=1 0.0789174 0.0128619 144 6.13575 0.0000***
age∈[16,20) 0.3487278 0.0073290 285837 47.58162 0.0000***
age∈[20,60] 0.2908208 0.0069008 285837 42.14277 0.0000***
age∈[60,64] 0.1302745 0.0076731 285837 16.97796 0.0000***
age=64 -0.0015075 0.0095230 285837 -0.15830 0.8742
age≥65 -0.1158139 0.0071840 285837 -16.12112 0.0000***
gender=F -0.0128278 0.0094166 285837 -1.36224 0.1731
civil status=married 0.0165010 0.0020274 285837 8.13905 0.0000***
civil status=widow/er 0.0019708 0.0057550 285837 0.34246 0.7320
civil status=divorced 0.0073863 0.0031928 285837 2.31341 0.0207*
nationality=Swiss -0.0184364 0.0013458 285837 -13.69904 0.0000***
secresid=yes -0.0704905 0.0046144 285837 -15.27629 0.0000***
housesize=2 -0.0022829 0.0017894 285837 -1.27580 0.2020
housesize∈[3,5] -0.0159658 0.0018651 285837 -8.56049 0.0000***
housesize∈[6,10] -0.0326060 0.0032409 285837 -10.06066 0.0000***
housesize>10 0.0131268 0.0161541 285837 0.81260 0.4164
Income∈(0,12000] 0.3519415 0.0024847 285837 141.64245 0.0000***
Income∈(12000,24000] 0.4849786 0.0024818 285837 195.41596 0.0000***
Income∈(24000,48000] 0.5570826 0.0020546 285837 271.14377 0.0000***
Income∈(48000,72000] 0.5771984 0.0020013 285837 288.41058 0.0000***
Income∈(72000,96000] 0.5823435 0.0021831 285837 266.74995 0.0000***
Income∈(96000,120000] 0.5862130 0.0021795 285837 268.97042 0.0000***
Income> 120000 0.6061222 0.0059727 285837 101.48181 0.0000***
OASItri=1 -0.1852942 0.0085840 285837 -21.58584 0.0000***
age∈[16,20):gender=F -0.0137442 0.0104941 285837 -1.30971 0.1903
age∈[20,60):gender=F 0.0133350 0.0096555 285837 1.38108 0.1673
age∈[60,64):gender=F -0.0047423 0.0106959 285837 -0.44337 0.6575
age=64:gender=F -0.1469525 0.0131640 285837 -11.16318 0.0000***
age≥ 65:gender=F 0.0595271 0.0100597 285837 5.91739 0.0000***
gender=F:civil status=married -0.0515040 0.0027248 285837 -18.90159 0.0000***
gender=F:civil status=widow/er -0.0440050 0.0066260 285837 -6.64127 0.0000***
gender=F:civil status=divorced -0.0130737 0.0042418 285837 -3.08211 0.0021**

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Appendix 3: Estimates of district proportions

Table 3: Estimated district proportions of active people and estimated percent RRMSE in parenthesis,
where rrmse, rrmseMB and rrmsePDB are obtained respectively with the PB, MB and PDB estimates of MSE.

ZH00
Nr 101 102 103 104 105 106 107 108 109 110 111 112
size 1309 807 3455 2113 2294 3088 2600 1488 3220 4075 2063 9510

GREG 0.6913 0.6719 0.7115 0.7229 0.6801 0.6742 0.6234 0.6861 0.6729 0.6823 0.6782 0.7008
%CV(GREG) (1.817) (2.421) (1.069) (1.325) (1.412) (1.233) (1.502) (1.729) (1.212) (1.047) (1.49) (0.661)

LMM 0.6821 0.6803 0.6963 0.7113 0.6783 0.6592 0.6311 0.6838 0.6808 0.6783 0.6703 0.6932
%rrmse (0.847) (0.962) (0.617) (0.713) (0.737) (0.634) (0.747) (0.82) (0.633) (0.575) (0.736) (0.426)

%rrmseMB (0.891) (0.942) (0.562) (0.7) (0.742) (0.646) (0.826) (0.783) (0.643) (0.562) (0.688) (0.382)
%rrmsePDB (0.777) (0.734) (0.54) (1) (0.538) (0.604) (0.73) (0.832) (0.654) (0.589) (0.652) (0.383)

BM 0.6873 0.6855 0.7016 0.7168 0.6835 0.6642 0.6359 0.6890 0.6860 0.6835 0.6755 0.6985
%rrmse (1.118) (1.211) (0.927) (0.962) (1.05) (0.98) (1.046) (1.115) (0.999) (0.92) (1.068) (0.843)

%rrmseMB (0.972) (1.105) (0.654) (0.811) (0.819) (0.733) (0.861) (0.929) (0.724) (0.649) (0.822) (0.442)
%rrmsePDB (0.772) (0.723) (0.534) (0.99) (0.524) (0.589) (0.721) (0.817) (0.642) (0.576) (0.634) (0.37)

BE02 BE00 LU00
Nr 241 242 243 244 245 246 247 248 249 250 301 302
size 2706 2420 1800 2079 2556 10294 2870 404 1013 1210 909 3493

GREG 0.6219 0.6234 0.7136 0.6601 0.6815 0.6673 0.6409 0.7061 0.6285 0.6608 0.667 0.6952
%CV(GREG) (1.449) (1.558) (1.466) (1.549) (1.33) (0.687) (1.374) (3.144) (2.374) (2.025) (2.273) (1.09)

LMM 0.6216 0.6177 0.6925 0.6556 0.6672 0.6621 0.6433 0.6474 0.6365 0.6514 0.6431 0.6819
%rrmse (0.703) (0.755) (0.815) (0.751) (0.724) (0.4) (0.724) (1.111) (0.999) (0.888) (0.927) (0.59)

%rrmseMB (0.705) (0.849) (0.824) (0.731) (0.762) (0.373) (0.656) (1.332) (0.952) (0.889) (1.199) (0.586)
%rrmsePDB (0.6) (0.925) (1.704) (0.672) (1.031) (0.385) (0.642) (1.949) (0.955) (0.875) (1.409) (0.487)

BM 0.6263 0.6224 0.6978 0.6606 0.6723 0.6672 0.6482 0.6524 0.6414 0.6564 0.6480 0.6870
%rrmse (0.995) (1.069) (1.074) (1.054) (1.01) (0.824) (1.056) (1.349) (1.234) (1.186) (1.194) (0.928)

%rrmseMB (0.769) (0.902) (0.971) (0.876) (0.885) (0.404) (0.784) (1.518) (1.107) (1.069) (1.367) (0.686)
%rrmsePDB (0.606) (0.921) (1.698) (0.662) (1.024) (0.371) (0.635) (1.943) (0.947) (0.867) (1.402) (0.487)

LU00 UR00 SZ00 OW00 NW00
Nr 303 304 305 400 501 502 503 504 505 506 600 700
size 9168 3634 2503 895 371 62 703 333 1073 1405 922 1183

GREG 0.6647 0.7 0.6866 0.6277 0.6531 0.6125 0.7031 0.7109 0.6984 0.6831 0.7212 0.6625
%CV(GREG) (0.721) (1.058) (1.313) (2.555) (3.747) (10.001) (2.425) (3.469) (1.986) (1.799) (2.018) (2.065)

LMM 0.6626 0.7004 0.6914 0.6365 0.6793 0.6354 0.6889 0.6929 0.6973 0.6815 0.6977 0.6696
%rrmse (0.402) (0.616) (0.659) (0.991) (1.215) (1.741) (1.091) (1.199) (0.917) (0.865) (0.939) (0.888)

%rrmseMB (0.385) (0.611) (0.615) (1.559) (1.146) (1.858) (1.026) (1.149) (1.094) (0.803) (1.449) (1.089)
%rrmsePDB (0.447) (0.497) (0.581) (2.018) (0.457) (1.043) (0.535) (0.495) (1.23) (0.571) (2.25) (1.44)

BM 0.6676 0.7058 0.6967 0.6413 0.6845 0.6403 0.6941 0.6982 0.7027 0.6867 0.7030 0.6747
%rrmse (0.824) (0.938) (0.947) (1.208) (1.417) (1.939) (1.306) (1.374) (1.175) (1.119) (1.186) (1.208)

%rrmseMB (0.466) (0.688) (0.738) (1.562) (1.298) (2.044) (1.148) (1.274) (1.154) (0.91) (1.602) (1.169)
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%rrmsePDB (0.441) (0.498) (0.576) (2.018) (0.442) (1.032) (0.521) (0.481) (1.228) (0.561) (2.241) (1.439)

GL00 ZG00 FR00 SO00
Nr 800 900 1001 1002 1003 1004 1005 1006 1007 1101 1102 1103
size 1030 6086 730 571 1238 2509 816 1050 448 493 347 221

GREG 0.6852 0.6833 0.6723 0.6756 0.6492 0.678 0.688 0.6981 0.7263 0.6632 0.6505 0.6715
%CV(GREG) (2.062) (0.845) (2.546) (2.865) (2.062) (1.354) (2.323) (1.999) (2.869) (3.175) (3.886) (4.635)

LMM 0.6682 0.6798 0.6756 0.6752 0.6665 0.6701 0.6865 0.6790 0.7076 0.6901 0.6500 0.6784
%rrmse (0.918) (0.467) (1.031) (1.135) (0.879) (0.74) (0.959) (0.953) (0.972) (1.044) (1.208) (1.255)

%rrmseMB (0.921) (0.466) (0.961) (1.064) (1.014) (0.762) (0.976) (0.874) (1.235) (1.526) (1.237) (1.68)
%rrmsePDB (1.36) (0.42) (0.578) (0.546) (1.485) (0.889) (0.66) (0.661) (1.96) (2.087) (0.821) (1.747)

BM 0.6733 0.6850 0.6807 0.6803 0.6715 0.6752 0.6917 0.6842 0.713 0.6953 0.6549 0.6835
%rrmse (1.165) (0.908) (1.265) (1.327) (1.153) (1.066) (1.12) (1.152) (1.165) (1.259) (1.431) (1.44)

%rrmseMB (1.075) (0.549) (1.101) (1.189) (1.074) (0.838) (1.036) (1.009) (1.388) (1.574) (1.428) (1.756)
%rrmsePDB (1.355) (0.414) (0.571) (0.533) (1.49) (0.888) (0.656) (0.648) (1.954) (2.088) (0.811) (1.748)

SO00 BS00 BL00
Nr 1104 1105 1106 1107 1108 1109 1110 1200 1301 1302 1303 1304
size 523 619 1261 1195 1396 428 339 4609 4070 509 1431 873

GREG 0.6169 0.6403 0.6641 0.6425 0.6554 0.6908 0.5957 0.6075 0.6015 0.668 0.6536 0.676
%CV(GREG) (3.399) (2.978) (1.978) (2.133) (1.92) (3.195) (4.418) (1.178) (1.261) (3.082) (1.902) (2.311)

LMM 0.6369 0.6519 0.6568 0.6357 0.6587 0.6851 0.6311 0.6001 0.5979 0.6579 0.6375 0.6720
%rrmse (1.235) (1.055) (0.933) (0.874) (0.969) (1.136) (1.227) (0.601) (0.676) (1.138) (0.943) (0.926)

%rrmseMB (1.216) (1.063) (0.904) (0.89) (0.927) (1.125) (1.773) (0.794) (0.779) (1.042) (0.871) (1.109)
%rrmsePDB (0.801) (0.622) (1.184) (0.762) (0.898) (1.466) (1.913) (0.897) (1.189) (0.727) (0.68) (1.902)

BM 0.6417 0.6568 0.6618 0.6405 0.6637 0.6903 0.6359 0.6047 0.6024 0.6629 0.6424 0.6771
%rrmse (1.447) (1.29) (1.17) (1.121) (1.222) (1.254) (1.384) (0.964) (1.042) (1.314) (1.148) (1.139)

%rrmseMB (1.339) (1.195) (0.985) (0.986) (1.019) (1.233) (1.804) (0.785) (0.799) (1.172) (0.955) (1.254)
%rrmsePDB (0.8) (0.616) (1.184) (0.759) (0.897) (1.461) (1.913) (0.895) (1.19) (0.725) (0.663) (1.896)

BL00 SH00 AR00 AI00 SG00
Nr 1305 1401 1402 1403 1404 1405 1406 1501 1502 1503 1600 1721
size 399 106 202 1368 90 162 122 600 413 389 362 3051

GREG 0.6548 0.7135 0.741 0.6253 0.6717 0.6936 0.7448 0.6773 0.6734 0.7078 0.686 0.6634
%CV(GREG) (3.592) (5.994) (4.049) (2.059) (7.213) (5.12) (5.14) (2.755) (3.347) (3.172) (3.511) (1.272)

LMM 0.6501 0.6798 0.6689 0.6246 0.6244 0.629 0.6551 0.6669 0.6584 0.6648 0.6701 0.6583
%rrmse (1.268) (1.335) (1.237) (0.879) (1.569) (1.37) (1.489) (1.074) (1.062) (1.176) (1.004) (0.677)

%rrmseMB (1.195) (2.208) (2.374) (1.264) (2.421) (2.831) (1.906) (1.001) (1.279) (1.939) (1.186) (0.701)
%rrmsePDB (0.549) (2.444) (3.265) (1.802) (1.028) (3.436) (1.821) (0.751) (1.467) (2.328) (1.448) (0.705)

BM 0.655 0.685 0.674 0.6294 0.6292 0.6338 0.6601 0.672 0.6635 0.6699 0.6752 0.6633
%rrmse (1.435) (1.516) (1.439) (1.161) (1.693) (1.526) (1.631) (1.295) (1.321) (1.357) (1.266) (1.022)

%rrmseMB (1.312) (2.332) (2.502) (1.287) (2.514) (2.925) (2.03) (1.16) (1.475) (2.067) (1.388) (0.773)
%rrmsePDB (0.535) (2.44) (3.259) (1.805) (1.02) (3.431) (1.817) (0.738) (1.461) (2.321) (1.443) (0.7)

SG00 GR00
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Nr 1722 1723 1724 1725 1726 1727 1728 1821 1822 1823 1824 1825
size 1039 1767 891 966 1678 1136 1841 256 120 326 477 261

GREG 0.6506 0.6845 0.703 0.693 0.6658 0.6541 0.6701 0.6486 0.576 0.6397 0.6507 0.6686
%CV(GREG) (2.239) (1.589) (2.132) (2.099) (1.703) (2.124) (1.609) (4.552) (7.78) (4.109) (3.327) (4.317)

LMM 0.6604 0.6723 0.6785 0.6527 0.6703 0.6459 0.6694 0.6431 0.5776 0.6411 0.6728 0.6560
%rrmse (0.953) (0.789) (1.413) (0.925) (0.848) (0.913) (0.745) (1.185) (1.57) (1.26) (1.116) (1.334)

%rrmseMB (0.961) (0.882) (1.49) (1.365) (0.823) (0.936) (0.746) (1.226) (2.026) (1.189) (1.25) (1.765)
%rrmsePDB (1.119) (1.824) (1.29) (2.287) (0.558) (0.663) (0.73) (0.954) (1.8) (0.508) (1.046) (1.624)

BM 0.6654 0.6774 0.6837 0.6577 0.6754 0.6508 0.6745 0.6480 0.5821 0.6459 0.678 0.6610
%rrmse (1.166) (1.061) (1.491) (1.188) (1.094) (1.196) (1.064) (1.395) (1.707) (1.552) (1.332) (1.517)

%rrmseMB (1.083) (1.027) (1.505) (1.526) (0.911) (1.072) (0.853) (1.41) (2.089) (1.431) (1.35) (1.911)
%rrmsePDB (1.108) (1.816) (1.287) (2.279) (0.551) (0.652) (0.726) (0.943) (1.797) (0.503) (1.043) (1.616)

GR00 AG00
Nr 1826 1827 1828 1829 1830 1831 1901 1902 1903 1904 1905 1906
size 690 493 214 1096 660 541 3805 6956 3683 2409 1954 1594

GREG 0.7163 0.6892 0.6042 0.6746 0.6615 0.6071 0.6723 0.6944 0.6692 0.6629 0.6607 0.6709
%CV(GREG) (2.377) (2.993) (5.493) (2.079) (2.758) (3.429) (1.096) (0.77) (1.123) (1.409) (1.569) (1.695)

LMM 0.6845 0.6871 0.5966 0.6584 0.6604 0.6294 0.6689 0.6806 0.6765 0.6615 0.6512 0.6734
%rrmse (1.029) (1.062) (1.379) (0.924) (1.058) (1.124) (0.608) (0.433) (0.584) (0.653) (0.758) (0.807)

%rrmseMB (1.317) (1.002) (1.745) (0.938) (1.119) (1.061) (0.609) (0.477) (0.679) (0.722) (0.741) (0.774)
%rrmsePDB (1.699) (0.619) (1.652) (0.667) (1.189) (0.657) (0.551) (0.56) (0.486) (0.589) (0.535) (0.736)

BM 0.6897 0.6923 0.6011 0.6634 0.6654 0.6342 0.674 0.6857 0.6816 0.6666 0.6562 0.6785
%rrmse (1.285) (1.237) (1.528) (1.197) (1.276) (1.376) (0.963) (0.857) (0.943) (1.008) (0.995) (1.075)

%rrmseMB (1.493) (1.134) (1.805) (1.047) (1.281) (1.24) (0.675) (0.506) (0.716) (0.803) (0.823) (0.887)
%rrmsePDB (1.689) (0.604) (1.649) (0.655) (1.175) (0.639) (0.551) (0.561) (0.498) (0.584) (0.53) (0.733)

AG00 TG00 TI00
Nr 1907 1908 1909 1910 1911 2011 2012 2013 2014 2015 2101 2102
size 2941 1575 2299 3367 1645 2656 3324 2316 2276 2603 2577 262

GREG 0.6883 0.7298 0.6661 0.6794 0.6564 0.6378 0.6897 0.6794 0.6971 0.6989 0.5797 0.5559
%CV(GREG) (1.202) (1.481) (1.431) (1.146) (1.728) (1.422) (1.129) (1.386) (1.337) (1.248) (1.628) (5.36)

LMM 0.6833 0.7177 0.6569 0.6803 0.6562 0.6404 0.6856 0.6670 0.6971 0.6902 0.5812 0.5390
%rrmse (0.632) (0.79) (0.718) (0.587) (0.823) (0.658) (0.633) (0.738) (0.665) (0.652) (0.804) (1.522)

%rrmseMB (0.619) (0.897) (0.741) (0.569) (0.794) (0.756) (0.618) (0.771) (0.677) (0.757) (1.01) (1.71)
%rrmsePDB (0.504) (1.415) (0.641) (0.587) (0.687) (0.953) (0.873) (1.669) (1.694) (1.501) (2.086) (1.104)

BM 0.6885 0.7232 0.6619 0.6855 0.6612 0.6453 0.6908 0.6721 0.7024 0.6954 0.5856 0.5431
%rrmse (0.964) (1.023) (0.952) (0.901) (1.086) (0.943) (0.996) (1.01) (0.967) (0.964) (1.053) (1.630)

%rrmseMB (0.717) (1.043) (0.787) (0.69) (0.896) (0.8) (0.751) (0.902) (0.821) (0.901) (1.014) (1.755)
%rrmsePDB (0.494) (1.414) (0.635) (0.584) (0.68) (0.951) (0.864) (1.662) (1.689) (1.492) (2.087) (1.105)

TI00 VD00
Nr 2103 2104 2105 2106 2107 2108 2221 2222 2223 2224 2225 2226
size 512 3271 7664 2739 685 314 1986 1923 2029 4325 7617 2915
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GREG 0.57 0.5601 0.5675 0.5535 0.5774 0.5962 0.6083 0.6531 0.7063 0.6441 0.6509 0.613
%CV(GREG) (3.728) (1.504) (0.969) (1.667) (3.172) (4.508) (1.746) (1.609) (1.381) (1.094) (0.816) (1.427)

LMM 0.5810 0.5579 0.5731 0.5578 0.5733 0.5828 0.6184 0.6398 0.6930 0.6343 0.6473 0.6147
%rrmse (1.23) (0.824) (0.524) (0.869) (1.238) (1.468) (0.828) (0.789) (0.692) (0.58) (0.457) (0.744)

%rrmseMB (1.321) (0.879) (0.684) (1.083) (1.903) (1.465) (0.781) (0.791) (0.618) (0.598) (0.484) (0.728)
%rrmsePDB (1.2) (1.162) (0.896) (1.306) (2.81) (1.031) (0.869) (0.702) (0.652) (0.652) (0.373) (0.858)

BM 0.5854 0.5622 0.5774 0.562 0.5777 0.5873 0.6231 0.6447 0.6983 0.6391 0.6523 0.6194
%rrmse (1.451) (1.128) (0.885) (1.112) (1.444) (1.611) (1.081) (1.093) (1.017) (0.908) (0.893) (1.022)

%rrmseMB (1.433) (0.908) (0.669) (1.075) (1.915) (1.558) (0.862) (0.899) (0.753) (0.667) (0.525) (0.803)
%rrmsePDB (1.202) (1.164) (0.905) (1.313) (2.812) (1.032) (0.867) (0.694) (0.651) (0.65) (0.374) (0.861)

VD00 VS00
Nr 2227 2228 2229 2230 2301 2302 2303 2304 2305 2306 2307 2308
size 3861 4498 3468 3993 661 625 371 138 301 297 1152 1110

GREG 0.6603 0.6492 0.6543 0.6249 0.6049 0.663 0.6294 0.5769 0.6146 0.6043 0.6461 0.6459
%CV(GREG) (1.117) (1.063) (1.196) (1.188) (3.104) (2.821) (3.93) (7.219) (4.507) (4.638) (2.157) (2.195)

LMM 0.6562 0.6469 0.6468 0.6142 0.6306 0.6521 0.6232 0.6076 0.5931 0.6261 0.6548 0.6465
%rrmse (0.633) (0.547) (0.582) (0.669) (1.088) (1.086) (1.295) (1.41) (1.422) (1.282) (0.936) (0.926)

%rrmseMB (0.64) (0.637) (0.688) (0.597) (1.881) (1.078) (1.318) (2.269) (1.562) (2.854) (1.084) (0.941)
%rrmsePDB (0.535) (0.493) (0.648) (0.537) (2.926) (0.537) (0.954) (2.796) (1.291) (4.413) (1.029) (0.948)

BM 0.6612 0.6518 0.6517 0.6189 0.6354 0.6571 0.6279 0.6122 0.5976 0.6309 0.6597 0.6515
%rrmse (0.864) (0.899) (0.961) (0.997) (1.383) (1.254) (1.461) (1.57) (1.564) (1.438) (1.208) (1.157)

%rrmseMB (0.657) (0.671) (0.741) (0.693) (1.924) (1.168) (1.418) (2.314) (1.69) (2.837) (1.151) (1.027)
%rrmsePDB (0.54) (0.503) (0.65) (0.532) (2.928) (0.536) (0.954) (2.796) (1.286) (4.414) (1.026) (0.947)

VS00 NE00 GE00
Nr 2309 2310 2311 2312 2313 2401 2402 2403 2404 2405 2406 2500
size 287 355 1177 1124 663 2052 1980 696 2665 814 581 20786

GREG 0.6144 0.6621 0.6161 0.6325 0.6723 0.6304 0.6358 0.593 0.6347 0.6821 0.6044 0.6218
%CV(GREG) (4.612) (3.749) (2.273) (2.251) (2.672) (1.636) (1.646) (3.04) (1.421) (2.308) (3.248) (0.525)

LMM 0.6211 0.6462 0.6176 0.6324 0.6743 0.6239 0.6223 0.6109 0.6293 0.6710 0.5865 0.6124
%rrmse (1.33) (1.177) (0.949) (0.924) (0.994) (0.788) (0.801) (1.072) (0.695) (0.905) (1.145) (0.31)

%rrmseMB (1.874) (1.122) (0.978) (1.146) (1.214) (0.74) (0.792) (1.053) (0.661) (0.878) (1.1) (0.345)
%rrmsePDB (2) (0.54) (0.631) (1.483) (1.622) (0.671) (0.931) (0.863) (0.673) (0.644) (0.785) (0.282)

BM 0.6259 0.6511 0.6223 0.6373 0.6795 0.6287 0.6270 0.6156 0.6341 0.6761 0.5910 0.6171
%rrmse (1.457) (1.38) (1.227) (1.17) (1.164) (1.084) (1.087) (1.303) (1.024) (1.134) (1.315) (0.81)

%rrmseMB (1.895) (1.293) (1.08) (1.185) (1.256) (0.867) (0.877) (1.21) (0.786) (1.026) (1.202) (0.346)
%rrmsePDB (1.998) (0.52) (0.617) (1.482) (1.622) (0.658) (0.922) (0.859) (0.674) (0.647) (0.787) (0.284)

JU00
Nr 2601 2602 2603
size 1817 493 1292

GREG 0.6064 0.6858 0.5935
%CV(GREG) (1.836) (2.948) (2.233)
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LMM 0.6147 0.6448 0.5813
%rrmse (0.889) (1.125) (0.975)

%rrmseMB (0.94) (1.33) (1.257)
%rrmsePDB (0.952) (1.861) (1.141)

BM 0.6194 0.6497 0.5857
%rrmse (1.118) (1.361) (1.211)

%rrmseMB (0.981) (1.511) (1.284)
%rrmsePDB (0.954) (1.858) (1.141)
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Appendix 4: Estimates of district proportions with 95% CIs

Table 4: Estimated district proportions of active people together with a 95% confidence intervals
based on parametric bootstrap MSE estimates.

ZH00
Nr 101 102 103 104 105 106 107 108 109 110 111 112
size 1309 807 3455 2113 2294 3088 2600 1488 3220 4075 2063 9510

LMM 0.6821 0.6803 0.6963 0.7113 0.6783 0.6592 0.6311 0.6838 0.6808 0.6783 0.6703 0.6932
UL 0.6934 0.6931 0.7047 0.7213 0.6881 0.6674 0.6403 0.6948 0.6892 0.6860 0.6800 0.6990
LL 0.6708 0.6675 0.6879 0.7014 0.6685 0.651 0.6218 0.6728 0.6723 0.6707 0.6607 0.6874

BM 0.6873 0.6855 0.7016 0.7168 0.6835 0.6642 0.6359 0.6890 0.6860 0.6835 0.6755 0.6985
UL 0.7023 0.7018 0.7143 0.7303 0.6976 0.6770 0.6489 0.7041 0.6994 0.6958 0.6896 0.7100
LL 0.6722 0.6692 0.6888 0.7033 0.6694 0.6514 0.6229 0.674 0.6725 0.6712 0.6613 0.6870

BE02 BE00 LU00
Nr 241 242 243 244 245 246 247 248 249 250 301 302
size 2706 2420 1800 2079 2556 10294 2870 404 1013 1210 909 3493

LMM 0.6216 0.6177 0.6925 0.6556 0.6672 0.6621 0.6433 0.6474 0.6365 0.6514 0.6431 0.6819
UL 0.6302 0.6268 0.7036 0.6652 0.6767 0.6673 0.6524 0.6615 0.649 0.6628 0.6548 0.6897
LL 0.6130 0.6086 0.6815 0.6459 0.6577 0.6569 0.6341 0.6333 0.6241 0.6401 0.6315 0.674

BM 0.6263 0.6224 0.6978 0.6606 0.6723 0.6672 0.6482 0.6524 0.6414 0.6564 0.6480 0.6870
UL 0.6386 0.6355 0.7125 0.6742 0.6856 0.6780 0.6616 0.6696 0.6569 0.6716 0.6632 0.6996
LL 0.6141 0.6094 0.6831 0.6469 0.6590 0.6564 0.6347 0.6351 0.6259 0.6411 0.6329 0.6745

LU00 UR00 SZ00 OW00 NW00
Nr 303 304 305 400 501 502 503 504 505 506 600 700
size 9168 3634 2503 895 371 62 703 333 1073 1405 922 1183

LMM 0.6626 0.7004 0.6914 0.6365 0.6793 0.6354 0.6889 0.6929 0.6973 0.6815 0.6977 0.6696
UL 0.6678 0.7089 0.7004 0.6488 0.6955 0.6571 0.7036 0.7092 0.7099 0.6931 0.7105 0.6812
LL 0.6574 0.6920 0.6825 0.6241 0.6631 0.6137 0.6741 0.6766 0.6848 0.6700 0.6848 0.6579

BM 0.6676 0.7058 0.6967 0.6413 0.6845 0.6403 0.6941 0.6982 0.7027 0.6867 0.7030 0.6747
UL 0.6784 0.7187 0.7096 0.6565 0.7035 0.6646 0.7119 0.7170 0.7188 0.7018 0.7193 0.6907
LL 0.6568 0.6928 0.6838 0.6261 0.6655 0.6159 0.6763 0.6794 0.6865 0.6717 0.6867 0.6587

GL00 ZG00 FR00 SO00
Nr 800 900 1001 1002 1003 1004 1005 1006 1007 1101 1102 1103
size 1030 6086 730 571 1238 2509 816 1050 448 493 347 221

LMM 0.6682 0.6798 0.6756 0.6752 0.6665 0.6701 0.6865 0.679 0.7076 0.6901 0.65 0.6784
UL 0.6802 0.6861 0.6892 0.6902 0.6779 0.6798 0.6994 0.6917 0.7211 0.7042 0.6654 0.6950
LL 0.6562 0.6736 0.6619 0.6602 0.6550 0.6603 0.6736 0.6663 0.6942 0.6760 0.6346 0.6617

BM 0.6733 0.6850 0.6807 0.6803 0.6715 0.6752 0.6917 0.6842 0.713 0.6953 0.6549 0.6835
UL 0.6887 0.6972 0.6976 0.698 0.6867 0.6893 0.7069 0.6996 0.7293 0.7125 0.6733 0.7028
LL 0.6579 0.6728 0.6638 0.6626 0.6564 0.6611 0.6766 0.6687 0.6968 0.6782 0.6366 0.6642
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SO00 BS00 BL00
Nr 1104 1105 1106 1107 1108 1109 1110 1200 1301 1302 1303 1304
size 523 619 1261 1195 1396 428 339 4609 4070 509 1431 873

LMM 0.6369 0.6519 0.6568 0.6357 0.6587 0.6851 0.6311 0.6001 0.5979 0.6579 0.6375 0.672
UL 0.6523 0.6654 0.6688 0.6466 0.6712 0.7003 0.6463 0.6072 0.6058 0.6725 0.6493 0.6842
LL 0.6215 0.6384 0.6448 0.6248 0.6462 0.6698 0.6159 0.5931 0.59 0.6432 0.6257 0.6598

BM 0.6417 0.6568 0.6618 0.6405 0.6637 0.6903 0.6359 0.6047 0.6024 0.6629 0.6424 0.6771
UL 0.6599 0.6735 0.6770 0.6546 0.6796 0.7072 0.6532 0.6161 0.6148 0.6799 0.6568 0.6922
LL 0.6235 0.6402 0.6466 0.6264 0.6478 0.6733 0.6187 0.5933 0.5901 0.6458 0.6279 0.662

BL00 SH00 AR00 AI00 SG00
Nr 1305 1401 1402 1403 1404 1405 1406 1501 1502 1503 1600 1721
size 399 106 202 1368 90 162 122 600 413 389 362 3051

LMM 0.6501 0.6798 0.6689 0.6246 0.6244 0.629 0.6551 0.6669 0.6584 0.6648 0.6701 0.6583
UL 0.6662 0.6976 0.6851 0.6354 0.6436 0.6459 0.6742 0.6810 0.6721 0.6802 0.6833 0.6671
LL 0.6339 0.6620 0.6527 0.6139 0.6052 0.6121 0.6360 0.6529 0.6447 0.6495 0.6569 0.6496

BM 0.655 0.685 0.674 0.6294 0.6292 0.6338 0.6601 0.672 0.6635 0.6699 0.6752 0.6633
UL 0.6735 0.7054 0.693 0.6437 0.6501 0.6528 0.6812 0.6891 0.6806 0.6877 0.6920 0.6766
LL 0.6366 0.6647 0.6550 0.6151 0.6083 0.6149 0.6390 0.655 0.6463 0.6521 0.6584 0.6501

SG00 GR00
Nr 1722 1723 1724 1725 1726 1727 1728 1821 1822 1823 1824 1825
size 1039 1767 891 966 1678 1136 1841 256 120 326 477 261

LMM 0.6604 0.6723 0.6785 0.6527 0.6703 0.6459 0.6694 0.6431 0.5776 0.6411 0.6728 0.656
UL 0.6727 0.6827 0.6973 0.6646 0.6815 0.6575 0.6791 0.6581 0.5954 0.6569 0.6875 0.6731
LL 0.6481 0.6619 0.6598 0.6409 0.6592 0.6343 0.6596 0.6282 0.5599 0.6252 0.6581 0.6388

BM 0.6654 0.6774 0.6837 0.6577 0.6754 0.6508 0.6745 0.6480 0.5821 0.6459 0.6780 0.6610
UL 00.6806 0.6915 0.7037 0.673 0.6899 0.6661 0.6885 0.6658 0.6015 0.6656 0.6957 0.6806
LL 0.6502 0.6633 0.6637 0.6424 0.6609 0.6356 0.6604 0.6303 0.5626 0.6263 0.6603 0.6413

GR00 AG00
Nr 1826 1827 1828 1829 1830 1831 1901 1902 1903 1904 1905 1906
size 690 493 214 1096 660 541 3805 6956 3683 2409 1954 1594

LMM 0.6845 0.6871 0.5966 0.6584 0.6604 0.6294 0.6689 0.6806 0.6765 0.6615 0.6512 0.6734
UL 0.6983 0.7014 0.6127 0.6703 0.6741 0.6433 0.6769 0.6863 0.6842 0.6700 0.6609 0.6840
LL 0.6707 0.6728 0.5804 0.6464 0.6467 0.6155 0.6609 0.6748 0.6687 0.6531 0.6415 0.6627

BM 0.6897 0.6923 0.6011 0.6634 0.6654 0.6342 0.674 0.6857 0.6816 0.6666 0.6562 0.6785
UL 0.7071 0.7091 0.6191 0.679 0.6821 0.6513 0.6867 0.6973 0.6942 0.6797 0.6690 0.6928
LL 0.6723 0.6755 0.5831 0.6478 0.6488 0.6171 0.6613 0.6742 0.6690 0.6534 0.6434 0.6642

AG00 TG00 TI00
Nr 1907 1908 1909 1910 1911 2011 2012 2013 2014 2015 2101 2102
size 2941 1575 2299 3367 1645 2656 3324 2316 2276 2603 2577 262

LMM 0.6833 0.7177 0.6569 0.6803 0.6562 0.6404 0.6856 0.667 0.6971 0.6902 0.5812 0.539
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UL 0.6917 0.7288 0.6661 0.6881 0.6668 0.6486 0.6941 0.6767 0.7061 0.6990 0.5904 0.5550
LL 0.6748 0.7066 0.6476 0.6725 0.6456 0.6321 0.6771 0.6574 0.688 0.6814 0.5721 0.5229

BM 0.6885 0.7232 0.6619 0.6855 0.6612 0.6453 0.6908 0.6721 0.7024 0.6954 0.5856 0.5431
UL 0.7015 0.7377 0.6742 0.6976 0.6753 0.6572 0.7043 0.6854 0.7157 0.7086 0.5977 0.5604
LL 0.6755 0.7087 0.6495 0.6734 0.6471 0.6333 0.6774 0.6588 0.6891 0.6823 0.5735 0.5257

TI00 VD00
Nr 2103 2104 2105 2106 2107 2108 2221 2222 2223 2224 2225 2226
size 512 3271 7664 2739 685 314 1986 1923 2029 4325 7617 2915

LMM 0.581 0.5579 0.5731 0.5578 0.5733 0.5828 0.6184 0.6398 0.693 0.6343 0.6473 0.6147
UL 0.5950 0.5669 0.5789 0.5673 0.5873 0.5996 0.6284 0.6497 0.7024 0.6415 0.6531 0.6237
LL 0.5670 0.5489 0.5672 0.5483 0.5594 0.566 0.6084 0.6299 0.6836 0.6271 0.6415 0.6058

BM 0.5854 0.5622 0.5774 0.562 0.5777 0.5873 0.6231 0.6447 0.6983 0.6391 0.6523 0.6194
UL 0.6020 0.5746 0.5874 0.5743 0.5941 0.6058 0.6363 0.6585 0.7122 0.6505 0.6637 0.6318
LL 0.5688 0.5498 0.5674 0.5498 0.5614 0.5687 0.6099 0.6309 0.6844 0.6278 0.6409 0.6070

VD00 VS00
Nr 2227 2228 2229 2230 2301 2302 2303 2304 2305 2306 2307 2308
size 3861 4498 3468 3993 661 625 371 138 301 297 1152 1110

LMM 0.6562 0.6469 0.6468 0.6142 0.6306 0.6521 0.6232 0.6076 0.5931 0.6261 0.6548 0.6465
UL 0.6643 0.6538 0.6542 0.6223 0.6440 0.666 0.6390 0.6244 0.6097 0.6418 0.6668 0.6583
LL 0.6480 0.6399 0.6394 0.6061 0.6171 0.6382 0.6073 0.5908 0.5766 0.6104 0.6427 0.6348

BM 0.6612 0.6518 0.6517 0.6189 0.6354 0.6571 0.6279 0.6122 0.5976 0.6309 0.6597 0.6515
UL 0.6724 0.6633 0.664 0.631 0.6526 0.6732 0.6459 0.6311 0.6160 0.6486 0.6754 0.6662
LL 0.6500 0.6403 0.6395 0.6068 0.6181 0.6409 0.6099 0.5934 0.5793 0.6131 0.6441 0.6367

VS00 NE00 GE00
Nr 2309 2310 2311 2312 2313 2401 2402 2403 2404 2405 2406 2500
size 287 355 1177 1124 663 2052 1980 696 2665 814 581 20786

LMM 0.6211 0.6462 0.6176 0.6324 0.6743 0.6239 0.6223 0.6109 0.6293 0.6710 0.5865 0.6124
UL 0.6373 0.6611 0.6291 0.6439 0.6875 0.6336 0.6321 0.6238 0.6378 0.6829 0.5996 0.6161
LL 0.6050 0.6313 0.6061 0.621 0.6612 0.6143 0.6125 0.5981 0.6207 0.6591 0.5733 0.6087

BM 0.6259 0.6511 0.6223 0.6373 0.6795 0.6287 0.6270 0.6156 0.6341 0.6761 0.5910 0.6171
UL 0.6438 0.6687 0.6373 0.6519 0.6950 0.6420 0.6404 0.6313 0.6468 0.6912 0.6062 0.6269
LL 0.6080 0.6335 0.6074 0.6226 0.664 0.6153 0.6137 0.5999 0.6213 0.6611 0.5757 0.6073

JU00
Nr 2601 2602 2603
size 1817 493 1292

LMM 0.6147 0.6448 0.5813
UL 0.6254 0.659 0.5924
LL 0.6040 0.6306 0.5702
BM 0.6194 0.6497 0.5857
UL 0.633 0.6671 0.5996
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LL 0.6058 0.6324 0.5718
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Table 5: Estimated district proportions of active people together with a 95% confidence intervals
based on MB MSE estimates.

ZH00
Nr 101 102 103 104 105 106 107 108 109 110 111 112
size 1309 807 3455 2113 2294 3088 2600 1488 3220 4075 2063 9510

LMM 0.6821 0.6803 0.6963 0.7113 0.6783 0.6592 0.6311 0.6838 0.6808 0.6783 0.6703 0.6932
UL 0.694 0.6929 0.704 0.7211 0.6882 0.6675 0.6413 0.6943 0.6893 0.6858 0.6794 0.6984
LL 0.6702 0.6677 0.6886 0.7016 0.6685 0.6508 0.6209 0.6733 0.6722 0.6709 0.6613 0.688

BM 0.6873 0.6855 0.7016 0.7168 0.6835 0.6642 0.6359 0.6890 0.6860 0.6835 0.6755 0.6985
UL 0.7004 0.7003 0.7106 0.7282 0.6945 0.6737 0.6466 0.7016 0.6957 0.6922 0.6863 0.7046
LL 0.6742 0.6706 0.6926 0.7054 0.6725 0.6547 0.6252 0.6765 0.6762 0.6748 0.6646 0.6925

BE02 BE00 LU00
Nr 241 242 243 244 245 246 247 248 249 250 301 302
size 2706 2420 1800 2079 2556 10294 2870 404 1013 1210 909 3493

LMM 0.6216 0.6177 0.6925 0.6556 0.6672 0.6621 0.6433 0.6474 0.6365 0.6514 0.6431 0.6819
UL 0.6302 0.628 0.7037 0.665 0.6772 0.667 0.6515 0.6643 0.6484 0.6628 0.6582 0.6897
LL 0.613 0.6074 0.6813 0.6462 0.6572 0.6573 0.635 0.6305 0.6247 0.6401 0.628 0.674

BM 0.6263 0.6224 0.6978 0.6606 0.6723 0.6672 0.6482 0.6524 0.6414 0.6564 0.6480 0.6870
UL 0.6358 0.6334 0.7111 0.6719 0.6839 0.6725 0.6581 0.6718 0.6553 0.6701 0.6654 0.6963
LL 0.6169 0.6114 0.6845 0.6492 0.6606 0.6619 0.6382 0.633 0.6275 0.6426 0.6307 0.6778

LU00 UR00 SZ00 OW00 NW00
Nr 303 304 305 400 501 502 503 504 505 506 600 700
size 9168 3634 2503 895 371 62 703 333 1073 1405 922 1183

LMM 0.6626 0.7004 0.6914 0.6365 0.6793 0.6354 0.6889 0.6929 0.6973 0.6815 0.6977 0.6696
UL 0.6676 0.7088 0.6998 0.6559 0.6946 0.6585 0.7027 0.7085 0.7123 0.6923 0.7175 0.6839
LL 0.6576 0.692 0.6831 0.617 0.6641 0.6123 0.675 0.6773 0.6824 0.6708 0.6779 0.6553

BM 0.6676 0.7058 0.6967 0.6413 0.6845 0.6403 0.6941 0.6982 0.7027 0.6867 0.7030 0.6747
UL 0.6737 0.7153 0.7068 0.661 0.7019 0.6659 0.7097 0.7156 0.7186 0.699 0.7251 0.6901
LL 0.6615 0.6963 0.6866 0.6217 0.6671 0.6146 0.6785 0.6807 0.6868 0.6745 0.6809 0.6592

GL00 ZG00 FR00 SO00
Nr 800 900 1001 1002 1003 1004 1005 1006 1007 1101 1102 1103
size 1030 6086 730 571 1238 2509 816 1050 448 493 347 221

LMM 0.6682 0.6798 0.6756 0.6752 0.6665 0.6701 0.6865 0.679 0.7076 0.6901 0.65 0.6784
UL 0.6803 0.686 0.6883 0.6892 0.6797 0.6801 0.6996 0.6906 0.7248 0.7107 0.6657 0.7007
LL 0.6561 0.6736 0.6628 0.6611 0.6532 0.66 0.6734 0.6674 0.6905 0.6694 0.6342 0.656

BM 0.6733 0.6850 0.6807 0.6803 0.6715 0.6752 0.6917 0.6842 0.713 0.6953 0.6549 0.6835
UL 0.6875 0.6924 0.6954 0.6962 0.6857 0.6863 0.7058 0.6977 0.7324 0.7168 0.6733 0.7071
LL 0.6591 0.6776 0.666 0.6645 0.6574 0.6641 0.6777 0.6707 0.6936 0.6739 0.6366 0.66

SO00 BS00 BL00
Nr 1104 1105 1106 1107 1108 1109 1110 1200 1301 1302 1303 1304
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size 523 619 1261 1195 1396 428 339 4609 4070 509 1431 873
LMM 0.6369 0.6519 0.6568 0.6357 0.6587 0.6851 0.6311 0.6001 0.5979 0.6579 0.6375 0.672

UL 0.6521 0.6655 0.6684 0.6468 0.6707 0.7002 0.653 0.6095 0.607 0.6713 0.6484 0.6866
LL 0.6217 0.6383 0.6452 0.6246 0.6468 0.67 0.6092 0.5908 0.5888 0.6444 0.6266 0.6574

BM 0.6417 0.6568 0.6618 0.6405 0.6637 0.6903 0.6359 0.6047 0.6024 0.6629 0.6424 0.6771
UL 0.6586 0.6722 0.6746 0.6529 0.677 0.707 0.6584 0.614 0.6119 0.6781 0.6544 0.6937
LL 0.6249 0.6415 0.649 0.6281 0.6505 0.6736 0.6134 0.5954 0.593 0.6476 0.6304 0.6605

BL00 SH00 AR00 AI00 SG00
Nr 1305 1401 1402 1403 1404 1405 1406 1501 1502 1503 1600 1721
size 399 106 202 1368 90 162 122 600 413 389 362 3051

LMM 0.6501 0.6798 0.6689 0.6246 0.6244 0.629 0.6551 0.6669 0.6584 0.6648 0.6701 0.6583
UL 0.6653 0.7093 0.7 0.6401 0.6541 0.6639 0.6796 0.68 0.6749 0.6901 0.6857 0.6674
LL 0.6349 0.6504 0.6378 0.6092 0.5948 0.5941 0.6306 0.6538 0.6419 0.6396 0.6545 0.6493

BM 0.6719 0.7166 0.7074 0.6454 0.6605 0.6707 0.6865 0.6873 0.6828 0.6974 0.6937 0.6735
UL 0.6719 0.7163 0.707 0.6453 0.6602 0.6702 0.6864 0.6873 0.6826 0.697 0.6936 0.6734
LL 0.6382 0.6537 0.6409 0.6135 0.5982 0.5975 0.6338 0.6567 0.6443 0.6428 0.6568 0.6533

SG00 GR00
Nr 1722 1723 1724 1725 1726 1727 1728 1821 1822 1823 1824 1825
size 1039 1767 891 966 1678 1136 1841 256 120 326 477 261

LMM 0.6604 0.6723 0.6785 0.6527 0.6703 0.6459 0.6694 0.6431 0.5776 0.6411 0.6728 0.656
UL 0.6728 0.6839 0.6984 0.6702 0.6811 0.6578 0.6791 0.6586 0.6006 0.656 0.6893 0.6786
LL 0.648 0.6607 0.6587 0.6353 0.6595 0.6341 0.6596 0.6277 0.5547 0.6261 0.6563 0.6333

BM 0.6654 0.6774 0.6837 0.6577 0.6754 0.6508 0.6745 0.6480 0.5821 0.6459 0.6780 0.6610
UL 0.6796 0.691 0.7039 0.6774 0.6875 0.6645 0.6857 0.666 0.6059 0.6641 0.6959 0.6857
LL 0.6513 0.6638 0.6635 0.638 0.6634 0.6372 0.6632 0.6301 0.5582 0.6278 0.66 0.6362

GR00 AG00
Nr 1826 1827 1828 1829 1830 1831 1901 1902 1903 1904 1905 1906
size 690 493 214 1096 660 541 3805 6956 3683 2409 1954 1594

LMM 0.6845 0.6871 0.5966 0.6584 0.6604 0.6294 0.6689 0.6806 0.6765 0.6615 0.6512 0.6734
UL 0.7022 0.7006 0.617 0.6705 0.6749 0.6425 0.6769 0.6869 0.6855 0.6709 0.6607 0.6836
LL 0.6668 0.6736 0.5762 0.6463 0.6459 0.6163 0.6609 0.6742 0.6674 0.6522 0.6418 0.6632

BM 0.6897 0.6923 0.6011 0.6634 0.6654 0.6342 0.674 0.6857 0.6816 0.6666 0.6562 0.6785
UL 0.7099 0.7077 0.6224 0.677 0.6821 0.6496 0.6829 0.6926 0.6912 0.6771 0.6668 0.6903
LL 0.6695 0.6769 0.5798 0.6498 0.6487 0.6188 0.6651 0.6789 0.672 0.6561 0.6456 0.6667

AG00 TG00 TI00
Nr 1907 1908 1909 1910 1911 2011 2012 2013 2014 2015 2101 2102
size 2941 1575 2299 3367 1645 2656 3324 2316 2276 2603 2577 262

LMM 0.6833 0.7177 0.6569 0.6803 0.6562 0.6404 0.6856 0.667 0.6971 0.6902 0.5812 0.539
UL 0.6915 0.7303 0.6664 0.6879 0.6664 0.6499 0.6939 0.6771 0.7063 0.7004 0.5927 0.557
LL 0.675 0.7051 0.6473 0.6727 0.646 0.6309 0.6773 0.657 0.6878 0.6799 0.5697 0.5209
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BM 0.6885 0.7232 0.6619 0.6855 0.6612 0.6453 0.6908 0.6721 0.7024 0.6954 0.5856 0.5431
UL 0.6981 0.738 0.6721 0.6948 0.6728 0.6554 0.701 0.684 0.7137 0.7077 0.5973 0.5618
LL 0.6788 0.7084 0.6517 0.6762 0.6496 0.6351 0.6807 0.6602 0.6911 0.6832 0.574 0.5244

TI00 VD00
Nr 2103 2104 2105 2106 2107 2108 2221 2222 2223 2224 2225 2226
size 512 3271 7664 2739 685 314 1986 1923 2029 4325 7617 2915

LMM 0.581 0.5579 0.5731 0.5578 0.5733 0.5828 0.6184 0.6398 0.693 0.6343 0.6473 0.6147
UL 0.596 0.5675 0.5807 0.5696 0.5947 0.5996 0.6279 0.6497 0.7014 0.6417 0.6535 0.6235
LL 0.5659 0.5483 0.5654 0.546 0.552 0.5661 0.6089 0.6299 0.6847 0.6269 0.6412 0.606

BM 0.5854 0.5622 0.5774 0.562 0.5777 0.5873 0.6231 0.6447 0.6983 0.6391 0.6523 0.6194
UL 0.6018 0.5722 0.585 0.5739 0.5994 0.6052 0.6336 0.656 0.7086 0.6475 0.659 0.6292
LL 0.569 0.5522 0.5699 0.5502 0.556 0.5693 0.6126 0.6333 0.688 0.6308 0.6456 0.6097

VD00 VS00
Nr 2227 2228 2229 2230 2301 2302 2303 2304 2305 2306 2307 2308
size 3861 4498 3468 3993 661 625 371 138 301 297 1152 1110

LMM 0.6562 0.6469 0.6468 0.6142 0.6306 0.6521 0.6232 0.6076 0.5931 0.6261 0.6548 0.6465
UL 0.6644 0.6549 0.6555 0.6214 0.6538 0.6659 0.6392 0.6346 0.6113 0.6611 0.6687 0.6585
LL 0.6479 0.6388 0.6381 0.607 0.6073 0.6383 0.6071 0.5806 0.575 0.5911 0.6408 0.6346

BM 0.6612 0.6518 0.6517 0.6189 0.6354 0.6571 0.6279 0.6122 0.5976 0.6309 0.6597 0.6515
UL 0.6697 0.6604 0.6612 0.6273 0.6593 0.6721 0.6454 0.64 0.6174 0.6659 0.6746 0.6646
LL 0.6527 0.6432 0.6423 0.6105 0.6114 0.6421 0.6105 0.5845 0.5779 0.5958 0.6449 0.6383

VS00 NE00 GE00
Nr 2309 2310 2311 2312 2313 2401 2402 2403 2404 2405 2406 2500
size 287 355 1177 1124 663 2052 1980 696 2665 814 581 20786

LMM 0.6211 0.6462 0.6176 0.6324 0.6743 0.6239 0.6223 0.6109 0.6293 0.6710 0.5865 0.6124
UL 0.644 0.6604 0.6295 0.6466 0.6904 0.633 0.632 0.6235 0.6374 0.6826 0.5991 0.6165
LL 0.5983 0.6319 0.6058 0.6182 0.6583 0.6149 0.6127 0.5983 0.6211 0.6595 0.5738 0.6083

BM 0.6259 0.6511 0.6223 0.6373 0.6795 0.6287 0.6270 0.6156 0.6341 0.6761 0.5910 0.6171
UL 0.6491 0.6676 0.6355 0.6521 0.6962 0.6394 0.6378 0.6302 0.6438 0.6897 0.6049 0.6213
LL 0.6026 0.6346 0.6091 0.6225 0.6627 0.618 0.6163 0.601 0.6243 0.6625 0.577 0.6129

JU00
Nr 2601 2602 2603
size 1817 493 1292

LMM 0.6147 0.6448 0.5813
UL 0.626 0.6616 0.5956
LL 0.6034 0.628 0.567
BM 0.6194 0.6497 0.5857
UL 0.6313 0.669 0.6005
LL 0.6075 0.6305 0.571
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Table 6: Estimated district proportions of active people together with a 95% confidence intervals
based on PDB MSE estimates.

ZH00
Nr 101 102 103 104 105 106 107 108 109 110 111 112
size 1309 807 3455 2113 2294 3088 2600 1488 3220 4075 2063 9510

LMM 0.6821 0.6803 0.6963 0.7113 0.6783 0.6592 0.6311 0.6838 0.6808 0.6783 0.6703 0.6932
UL 0.6925 0.6901 0.7036 0.7253 0.6855 0.667 0.6401 0.695 0.6895 0.6862 0.6789 0.6984
LL 0.6717 0.6705 0.6889 0.6974 0.6712 0.6514 0.622 0.6727 0.672 0.6705 0.6618 0.688

BM 0.6873 0.6855 0.7016 0.7168 0.6835 0.6642 0.6359 0.6890 0.6860 0.6835 0.6755 0.6985
UL 0.6977 0.6952 0.7089 0.7307 0.6905 0.6719 0.6449 0.7001 0.6946 0.6912 0.6838 0.7036
LL 0.6769 0.6758 0.6942 0.7029 0.6765 0.6565 0.6269 0.678 0.6773 0.6758 0.6671 0.6934

BE02 BE00 LU00
Nr 241 242 243 244 245 246 247 248 249 250 301 302
size 2706 2420 1800 2079 2556 10294 2870 404 1013 1210 909 3493

LMM 0.6216 0.6177 0.6925 0.6556 0.6672 0.6621 0.6433 0.6474 0.6365 0.6514 0.6431 0.6819
UL 0.6289 0.6289 0.7156 0.6642 0.6807 0.6671 0.6514 0.6722 0.6485 0.6626 0.6609 0.6884
LL 0.6143 0.6065 0.6694 0.6469 0.6537 0.6571 0.6352 0.6227 0.6246 0.6402 0.6254 0.6753

BM 0.6263 0.6224 0.6978 0.6606 0.6723 0.6672 0.6482 0.6524 0.6414 0.6564 0.6480 0.6870
UL 0.6338 0.6337 0.721 0.6691 0.6858 0.672 0.6562 0.6772 0.6533 0.6675 0.6659 0.6936
LL 0.6189 0.6112 0.6746 0.652 0.6588 0.6623 0.6401 0.6275 0.6295 0.6452 0.6302 0.6805

LU00 UR00 SZ00 OW00 NW00
Nr 303 304 305 400 501 502 503 504 505 506 600 700
size 9168 3634 2503 895 371 62 703 333 1073 1405 922 1183

LMM 0.6626 0.7004 0.6914 0.6365 0.6793 0.6354 0.6889 0.6929 0.6973 0.6815 0.6977 0.6696
UL 0.6684 0.7072 0.6993 0.6616 0.6854 0.6484 0.6961 0.6996 0.7142 0.6892 0.7284 0.6885
LL 0.6568 0.6936 0.6836 0.6113 0.6732 0.6224 0.6816 0.6862 0.6805 0.6739 0.6669 0.6507

BM 0.6676 0.7058 0.6967 0.6413 0.6845 0.6403 0.6941 0.6982 0.7027 0.6867 0.7030 0.6747
UL 0.6734 0.7127 0.7046 0.6667 0.6904 0.6532 0.7012 0.7048 0.7196 0.6943 0.7339 0.6937
LL 0.6618 0.6989 0.6889 0.616 0.6786 0.6273 0.687 0.6916 0.6857 0.6792 0.6721 0.6557

GL00 ZG00 FR00 SO00
Nr 800 900 1001 1002 1003 1004 1005 1006 1007 1101 1102 1103
size 1030 6086 730 571 1238 2509 816 1050 448 493 347 221

LMM 0.6682 0.6798 0.6756 0.6752 0.6665 0.6701 0.6865 0.679 0.7076 0.6901 0.65 0.6784
UL 0.686 0.6854 0.6832 0.6824 0.6859 0.6817 0.6954 0.6878 0.7348 0.7183 0.6604 0.7016
LL 0.6504 0.6742 0.6679 0.6679 0.6471 0.6584 0.6776 0.6702 0.6805 0.6619 0.6395 0.6551

BM 0.6733 0.6850 0.6807 0.6803 0.6715 0.6752 0.6917 0.6842 0.713 0.6953 0.6549 0.6835
UL 0.6912 0.6906 0.6883 0.6874 0.6911 0.6869 0.7006 0.6929 0.7404 0.7238 0.6653 0.7069
LL 0.6554 0.6795 0.6731 0.6732 0.6519 0.6634 0.6828 0.6755 0.6857 0.6669 0.6445 0.6601

SO00 BS00 BL00
Nr 1104 1105 1106 1107 1108 1109 1110 1200 1301 1302 1303 1304
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size 523 619 1261 1195 1396 428 339 4609 4070 509 1431 873
LMM 0.6369 0.6519 0.6568 0.6357 0.6587 0.6851 0.6311 0.6001 0.5979 0.6579 0.6375 0.672

UL 0.6469 0.6598 0.672 0.6452 0.6703 0.7047 0.6548 0.6107 0.6118 0.6672 0.646 0.697
LL 0.6269 0.6439 0.6416 0.6262 0.6471 0.6654 0.6074 0.5896 0.584 0.6485 0.629 0.6469

BM 0.6417 0.6568 0.6618 0.6405 0.6637 0.6903 0.6359 0.6047 0.6024 0.6629 0.6424 0.6771
UL 0.6518 0.6648 0.6772 0.65 0.6754 0.71 0.6598 0.6153 0.6165 0.6723 0.6507 0.7023
LL 0.6317 0.6489 0.6464 0.631 0.6521 0.6705 0.6121 0.5941 0.5884 0.6535 0.634 0.6519

BL00 SH00 AR00 AI00 SG00
Nr 1305 1401 1402 1403 1404 1405 1406 1501 1502 1503 1600 1721
size 399 106 202 1368 90 162 122 600 413 389 362 3051

LMM 0.6501 0.6798 0.6689 0.6246 0.6244 0.629 0.6551 0.6669 0.6584 0.6648 0.6701 0.6583
UL 0.6571 0.7124 0.7117 0.6467 0.637 0.6714 0.6785 0.6767 0.6774 0.6952 0.6891 0.6674
LL 0.6431 0.6473 0.6261 0.6026 0.6119 0.5867 0.6317 0.6571 0.6395 0.6345 0.6511 0.6492

BM 0.6719 0.7166 0.7074 0.6454 0.6605 0.6707 0.6865 0.6873 0.6828 0.6974 0.6937 0.6735
UL 0.6619 0.7178 0.717 0.6517 0.6418 0.6765 0.6836 0.6817 0.6825 0.7004 0.6943 0.6724
LL 0.6482 0.6523 0.6309 0.6071 0.6166 0.5912 0.6366 0.6623 0.6445 0.6394 0.6561 0.6542

SG00 GR00
Nr 1722 1723 1724 1725 1726 1727 1728 1821 1822 1823 1824 1825
size 1039 1767 891 966 1678 1136 1841 256 120 326 477 261

LMM 0.6604 0.6723 0.6785 0.6527 0.6703 0.6459 0.6694 0.6431 0.5776 0.6411 0.6728 0.656
UL 0.6749 0.6963 0.6957 0.682 0.6776 0.6543 0.6789 0.6552 0.598 0.6474 0.6866 0.6768
LL 0.6459 0.6482 0.6614 0.6235 0.663 0.6375 0.6598 0.6311 0.5573 0.6347 0.659 0.6351

BM 0.6654 0.6774 0.6837 0.6577 0.6754 0.6508 0.6745 0.6480 0.5821 0.6459 0.6780 0.6610
UL 0.6799 0.7015 0.701 0.6871 0.6827 0.6591 0.6841 0.66 0.6026 0.6523 0.6918 0.6819
LL 0.651 0.6533 0.6665 0.6283 0.6681 0.6425 0.6649 0.6361 0.5616 0.6396 0.6641 0.64

GR00 AG00
Nr 1826 1827 1828 1829 1830 1831 1901 1902 1903 1904 1905 1906
size 690 493 214 1096 660 541 3805 6956 3683 2409 1954 1594

LMM 0.6845 0.6871 0.5966 0.6584 0.6604 0.6294 0.6689 0.6806 0.6765 0.6615 0.6512 0.6734
UL 0.7073 0.6954 0.6159 0.667 0.6758 0.6375 0.6761 0.688 0.6829 0.6692 0.658 0.6831
LL 0.6617 0.6788 0.5772 0.6498 0.645 0.6213 0.6617 0.6731 0.67 0.6539 0.6444 0.6637

BM 0.6897 0.6923 0.6011 0.6634 0.6654 0.6342 0.674 0.6857 0.6816 0.6666 0.6562 0.6785
UL 0.7125 0.7005 0.6205 0.6719 0.6808 0.6422 0.6813 0.6933 0.6883 0.6742 0.663 0.6883
LL 0.6669 0.6841 0.5817 0.6549 0.6501 0.6263 0.6667 0.6782 0.675 0.6589 0.6494 0.6688

AG00 TG00 TI00
Nr 1907 1908 1909 1910 1911 2011 2012 2013 2014 2015 2101 2102
size 2941 1575 2299 3367 1645 2656 3324 2316 2276 2603 2577 262

LMM 0.6833 0.7177 0.6569 0.6803 0.6562 0.6404 0.6856 0.667 0.6971 0.6902 0.5812 0.539
UL 0.69 0.7376 0.6651 0.6881 0.665 0.6523 0.6973 0.6889 0.7202 0.7105 0.605 0.5506
LL 0.6765 0.6978 0.6486 0.6725 0.6473 0.6284 0.6739 0.6452 0.6739 0.6699 0.5574 0.5273
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BM 0.6885 0.7232 0.6619 0.6855 0.6612 0.6453 0.6908 0.6721 0.7024 0.6954 0.5856 0.5431
UL 0.6951 0.7432 0.6701 0.6933 0.67 0.6573 0.7025 0.694 0.7256 0.7158 0.6096 0.5548
LL 0.6818 0.7031 0.6536 0.6776 0.6524 0.6332 0.6791 0.6502 0.6791 0.6751 0.5617 0.5313

TI00 VD00
Nr 2103 2104 2105 2106 2107 2108 2221 2222 2223 2224 2225 2226
size 512 3271 7664 2739 685 314 1986 1923 2029 4325 7617 2915

LMM 0.581 0.5579 0.5731 0.5578 0.5733 0.5828 0.6184 0.6398 0.693 0.6343 0.6473 0.6147
UL 0.5946 0.5706 0.5831 0.5721 0.6049 0.5946 0.6289 0.6486 0.7019 0.6424 0.6521 0.6251
LL 0.5673 0.5452 0.563 0.5435 0.5418 0.571 0.6078 0.631 0.6842 0.6262 0.6426 0.6044

BM 0.5854 0.5622 0.5774 0.562 0.5777 0.5873 0.6231 0.6447 0.6983 0.6391 0.6523 0.6194
UL 0.5992 0.575 0.5877 0.5765 0.6096 0.5991 0.6337 0.6534 0.7072 0.6473 0.657 0.6299
LL 0.5716 0.5494 0.5672 0.5476 0.5459 0.5754 0.6125 0.6359 0.6894 0.631 0.6475 0.609

VD00 VS00
Nr 2227 2228 2229 2230 2301 2302 2303 2304 2305 2306 2307 2308
size 3861 4498 3468 3993 661 625 371 138 301 297 1152 1110

LMM 0.6562 0.6469 0.6468 0.6142 0.6306 0.6521 0.6232 0.6076 0.5931 0.6261 0.6548 0.6465
UL 0.6631 0.6531 0.655 0.6207 0.6667 0.659 0.6348 0.6409 0.6081 0.6802 0.668 0.6585
LL 0.6493 0.6406 0.6386 0.6077 0.5944 0.6452 0.6115 0.5743 0.5781 0.5719 0.6416 0.6345

BM 0.6612 0.6518 0.6517 0.6189 0.6354 0.6571 0.6279 0.6122 0.5976 0.6309 0.6597 0.6515
UL 0.6682 0.6582 0.66 0.6253 0.6718 0.664 0.6396 0.6458 0.6127 0.6854 0.673 0.6636
LL 0.6542 0.6454 0.6434 0.6124 0.5989 0.6502 0.6162 0.5787 0.5826 0.5763 0.6465 0.6394

VS00 NE00 GE00
Nr 2309 2310 2311 2312 2313 2401 2402 2403 2404 2405 2406 2500
size 287 355 1177 1124 663 2052 1980 696 2665 814 581 20786

LMM 0.6211 0.6462 0.6176 0.6324 0.6743 0.6239 0.6223 0.6109 0.6293 0.6710 0.5865 0.6124
UL 0.6455 0.653 0.6253 0.6508 0.6958 0.6321 0.6337 0.6213 0.6376 0.6795 0.5955 0.6158
LL 0.5968 0.6393 0.61 0.6141 0.6529 0.6157 0.611 0.6006 0.621 0.6626 0.5775 0.609

BM 0.6259 0.6511 0.6223 0.6373 0.6795 0.6287 0.6270 0.6156 0.6341 0.6761 0.5910 0.6171
UL 0.6504 0.6577 0.6299 0.6558 0.7011 0.6368 0.6384 0.626 0.6424 0.6847 0.6001 0.6205
LL 0.6014 0.6444 0.6148 0.6187 0.6579 0.6206 0.6157 0.6052 0.6257 0.6676 0.5818 0.6136

JU00
Nr 2601 2602 2603
size 1817 493 1292

LMM 0.6147 0.6448 0.5813
UL 0.6262 0.6683 0.5943
LL .6032 0.6213 0.5683
BM 0.6194 0.6497 0.5857
UL 0.631 0.6734 0.5988
LL 0.6078 0.6261 0.5726
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