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1 Introduction
In Phase I of this project, several small area estimators of the proportions of active people
in the Swiss districts were compared. This was done by means of simulation studies under
different setups, namely model-based, design-based but knowing the data generating pro-
cess and design-based with unknown data generating process and considering the Structural
Survey data as the population data. For that purpose, several specific models were fitted, in-
cluding a linear mixed model (LMM) and a generalized linear mixed model (GLMM). These
two mentioned models produced very similar district estimates; then, the LMM was finally
selected because of its simplicity of implementation and computational efficiency as com-
pared with the GLMM. The selected LMM model was checked by different means including
the mentioned simulation studies and also through model diagnostics, and results indicate
that this model is relatively good in terms of predicting activity in the Swiss districts. The
selected LMM contains all the auxiliary variables listed in Table 1. More concretely, the
model contains random district effects and fixed effects for all the categories of all other
variables in Table 1, leaving out the first of them as base reference and including an inter-
cept. Fixed effects were also included for the interactions between gender and age group,
and between gender and civil status. The estimated regression coefficients are listed in
Table 1 of Appendix 2 and we can see that all of these variables are strongly significant and
the signs of the coefficients are somehow intuitive.

In the simulation studies of Phase I, the 6 districts will the smallest sample sizes (<150)
in the Structural Survey data were discarded, and the remaining data in that survey was
treated as the population data. Simulations were based on drawing smaller samples from
that “population”, but taking sample sizes for some districts as small as the district sample
sizes in the Structural Survey.

Phase II of this project consists of using the whole data set from the Structural Survey,
including all the districts, to fit the model selected in Phase I. The values of the covariates
included in the STATPOP data set for all the individuals in the target population are used to
predict the proportions of active people in the Swiss districts through the model. In order
to assess the reliability of the obtained estimates, mean squared error (MSE) estimates must
be also computed. Mean squared errors will be obtained under two different philosophies or
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approaches, namely the model-based approach (model MSE) and the design-based approach 
(design MSE). It is important to remark that the interpretation of these two MSEs is different, 
since the model MSE is the average squared error over all the possible realizations of the 
(random) population, whereas the design MSE is the average squared error over all the 
possible samples drawn from a (fixed) population. When the model is correctly specified 
(in practice this is seldom exactly true but good approximations may be found), the model 
MSE averaged for a large number of areas should be similar to the average design MSE for 
those areas, see Theorem 1 (ii) in Appendix 1.

A parametric bootstrap method will be used to estimate the model MSE. The proper-
ties of the bootstrap model MSEs as estimates of the model MSE will be analyzed in a 
model-based simulation study. Additionally, a design-based simulation study considering 
the Structural Survey data as the true population will analyze the properties of the bootstrap 
model MSE as an estimator of the design MSE.

A nonparametric bootstrap procedure is proposed for estimation of the design MSE. 
Simulations cannot be performed to analyze this estimator because the values of the target 
variable (active) for all the population units are not available and hence we cannot per-
form simulations imitating de exact Swiss sampling design. Thus, design MSE estimates 
using this nonparametric bootstrap method will be computed using the STATPOP data and 
compared with the parametric bootstrap model MSE estimates.

Section 2 describes the considered estimators of the proportions of active people. Sec-
tions 3 and 4 present the proposed bootstrap methods for estimation of model MSE and 
design MSE respectively. Section 5 describes the simulation studies performed to analyze 
the properties of the parametric bootstrap procedure. Section 6 comments on the results 
obtained using the STATPOP data set. Concluding remarks are given in Section 7.

Table 1: Variables (final)
active 1=active 0=inactive
district there are 147 of them
Strata1 0=Strata with large sampling weight median, 1=otherwise

District1724 1=District nr 1724 / 0=otherwise
age group 15, [16,20), [20,60), [60,64), 64, ≥ 65

gender male (1) / female (2)
civil status 1 = single, unmarried, 2 = married, in a registered partnership,

3 = widow/er, 4 = divorced, partnership dissolved
nationality Not swiss (1) / Swiss (2)

secondary residence no (1) / yes (2)
Household Size 1, 2, [3,5], [6,10] >10

Income unknown (In OASI = no), (0,12000], (12000,24000], (24000,48000],
(48000,72000], (72000,96000], (96000,120000], > 120000

OASItri 1 = in OASI only Jan-March, 0 = otherwise
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2 Considered estimators
Let U be the target population of size N; in this project, U is the set of individuals in the
STATPOP data set. This population is composed of D non-overlapping areas U1, . . . ,UD; in
this case, the Swiss districts, of sizes N1, . . . ,ND with N = ∑

D
d=1 Nd . Let s be a sample of

size n drawn from U ; in this case, s is the set of individuals in the Structural Survey. Let
sd the subsample from area (or district) d of size nd , d = 1, . . . ,D, where n = ∑

D
d=1 nd . Let

s̄d =Ud−sd denote the complement of the sample from area d. Let Ydi ∈ {0,1} be the target
variable for unit i in area d; here, Ydi = 1 stands for “active” and Ydi = 0 for “non-active”.
The target parameters are the area proportions

Pd = N−1
d

Nd

∑
i=1

Ydi, d = 1, . . . ,D.

If wdi is the calibrated sampling weight of i-th unit within d-th area, the GREG estimator is
given by

P̂GREG
d =

1
N̂d

∑
i∈sd

wdiYdi,

where N̂d = ∑i∈sd
wdi. This estimator is (practically) design unbiased; however, it is ineffi-

cient for areas with small sample sizes because it uses only the area-specific sample data.
Phase I has shown that the empirical best linear unbiased predictors (EBLUPs) based

on a LMM with the selected sets of covariates perform significantly better than the GREG
estimators in terms of total MSE, both under the model and the design approaches, for
practically all districts. The LMM assumes that the population variables Ydi satisfy a linear
regression model including random district effects representing the unexplained between-
area variability. More specifically, it assumes that

Ydi = x′diβββ +ud + edi,

ud
iid∼ N(0,σ2

u ), edi
iid∼ N(0,σ2

e ), i = 1, . . . ,Nd, d = 1, . . . ,D, (1)

where ud is the random effect for district d. Although normality is specified in (1), the 
best linear unbiased predictor (BLUP) derived from this model does not require normality. 
Moreover, even if normality does not hold, maximum likelihood (ML) and restricted ML 
(REML) estimates of the model parameters obtained from the normal likelihood are still 
consistent under regularity assumptions (Jiang 1996). In fact, we have seen in Phase I of the 
project that a LMM provides practically the same small area estimates as a logistic GLMM 
with the same set of covariates due to the fact that the true proportions of active people are 
in the interval (0.2,0.8), in which the logit function is approximately linear.

For details on the ML fitting of mixed models, see Hartley and Rao (1967). Here we 
focus on REML estimates (Patterson and Thompson 1971; 1974), which have smaller bias

for finite sample size. Let βββ̂ be the weighted least squared estimator of βββ and σ̂u
2 and σ̂e

2 be 
the restricted ML (REML) estimators of σu

2 and σe
2 based on the normal likelihood. The 

EBLUP of Pd under this model is given by

P̂EBLUP
d =

1
Nd

(
∑
i∈sd

Ydi + ∑
i∈s̄d

Ŷdi

)
, d = 1, . . . ,D, (2)
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where Ŷdi = x′diβ̂ββ + ûd is the predicted value of Ydi obtained by fitting the model. Here,
ûd = γ̂d(ȳd− x̄′dβ̂ββ ) is the BLUP of ud , where γ̂d = σ̂2

u/(σ̂
2
u + σ̂2

e /nd), ȳd = n−1
d ∑i∈sd

Ydi and
x̄d = n−1

d ∑i∈sd
xdi.

A desirable property of small area estimators is that the estimated totals for the areas
add up to a reliable estimator of the population total. This property is called the benchmark-
ing property. A reliable estimator of the population total Y = ∑

D
d=1 ∑

Nd
i=1Ydi is the GREG

estimator

Ŷ GREG =
D

∑
d=1

∑
i∈sd

wdiYdi =
D

∑
d=1

N̂dP̂GREG
d .

A simple adjustment of the EBLUP based on the LMM to make it satisfy the benchmarking
property is the ratio-adjustment

P̂BM
d = P̂EBLUP

d
Ŷ GREG

∑
D
d=1 NdP̂EBLUP

d
, d = 1, . . . ,D. (3)

This estimator is called hereafter benchmarked EBLUP.

3 Parametric bootstrap estimator of the model MSE
Analytical approximations to the model MSE of the EBLUP are obtained in the literature
only when normality holds and for the number of areas D tending to infinity. In our prob-
lem, target variables Ydi are binary and therefore the available analytical approximations are
not valid. Moreover, even if an analytical formula was available for the estimated MSE of
the unadjusted EBLUP, this MSE estimator is not necessarily good for the benchmarked
estimator. Note that the adjustment factor for the EBLUP given in (3) is random and there-
fore analytical approximation of the MSE of the benchmarked estimator is not straightfor-
ward. Thus, here we appeal to a parametric bootstrap procedure that can handle complex
estimators similarly as in the case of simple estimators. The selected parametric bootstrap
procedure is especially designed for finite populations and was first introduced by González-
Manteiga et al. (2008). It follows the steps below:

1) Fit the LMM model (1) to the available sample data {(xdi,Ydi); i ∈ sd, d = 1, . . . ,D},
obtaining model parameter estimates β̂ββ , σ̂2

u and σ̂2
e .

2) Generate bootstrap random effects as u∗d
iid∼ N(0, σ̂2

u ), d = 1, . . . ,D.

3) Generate bootstrap population values as

Y ∗di
ind.∼ N(x′diβ̂ββ +u∗d, σ̂

2
e ), i = 1, . . . ,Nd, d = 1, . . . ,D.

Although normality does not really hold because Ydi are binary, a bootstrap procedure
in which the bootstrap population values Y ∗di are generated from a logistic GLMM
was also implemented and the simulation results were practically identical to those
obtained from this bootstrap procedure.
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4) Calculate the true bootstrap proportions of interest

P∗d =
1

Nd

Nd

∑
i=1

Y ∗di, d = 1, . . . ,D.

5) Select the part of the bootstrap population corresponding to the sample units, called
bootstrap sample data: {(xdi,Y ∗di); i ∈ sd, d = 1, . . . ,D}. Now fit the LMM model (1)
to the bootstrap sample data, obtaining bootstrap model parameter estimates β̂ββ

∗
, σ̂2∗

u ,
σ̂2∗

e , and predicted random effects û∗d , d = 1, . . . ,D. Calculate the EBLUPs P̂EBLUP∗
d

using the bootstrap sample data, as

P̂EBLUP∗
d =

1
Nd

(
∑
i∈sd

Y ∗di + ∑
i∈s̄d

Ŷ ∗di

)
, d = 1, . . . ,D,

where Ŷ ∗di = x′diβ̂ββ
∗
+ û∗d is the predicted value of Y ∗di obtained by fitting the LMM to

the bootstrap sample data. Calculate also the benchmarked EBLUPs P̂BM∗
d as

P̂BM∗
d = P̂EBLUP∗

d
Ŷ GREG

∑
D
d=1 NdP̂EBLUP∗

d
,

6) Repeat Steps 2–5 for b = 1, . . . ,B, where B is large. Let P∗(b)d be the true proportion,

P̂EBLUP∗(b)
d be the EBLUP and P̂BM∗(b)

d be the benchmarked EBLUP obtained in b-
th bootstrap replicate. The parametric bootstrap estimator of the model MSE of the
EBLUP, P̂EBLUP

d , is given by

msePB(P̂EBLUP
d ) =

1
B

B

∑
b=1

(
P̂EBLUP∗(b)

d −P∗(b)d

)2
. (4)

Similarly, for the benchmarked EBLUP P̂BM
d , the parametric bootstrap MSE estimator

is given by

msePB(P̂BM
d ) =

1
B

B

∑
b=1

(
P̂BM∗(b)

d −P∗(b)d

)2
. (5)

4 Nonparametric bootstrap estimator of the design MSE
The design MSE is obtained by averaging the squared errors over the possible samples
drawn from a fixed population using the considered sampling design. Here we propose a
nonparametric bootstrap for the estimation of this design MSE. This procedure follows the
steps below:

1) Replicate each data point (xdi,Ydi) from the sample a number of times equal to the
rounded calibrated sampling weight wdi. This leads to the bootstrap population data
set {(x∗di,Y

∗
di); i = 1, . . . , N̂d, d = 1, . . . ,D}.
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2) Calculate the true bootstrap proportions of interest

P∗d =
1

N̂d

N̂d

∑
i=1

Y ∗di, d = 1, . . . ,D.

3) Draw a simple random sample s∗d from each district d. Select the corresponding boot-
strap elements for that sample: {(x∗di,Y

∗
di); i ∈ s∗d, d = 1, . . . ,D}. Now fit the LMM

model (1) to these bootstrap sample data, obtaining bootstrap model parameter es-
timates β̂ββ

∗
, σ̂2∗

u , σ̂2∗
e , and predicted random effects û∗d , d = 1, . . . ,D. Calculate the

EBLUPs P̂EBLUP∗
d using the bootstrap sample data,

P̂EBLUP∗
d =

1
Nd

∑
i∈s∗d

Y ∗di + ∑
i∈s̄∗d

Ŷ ∗di

 , d = 1, . . . ,D,

where Ŷ ∗di = x∗di
′
β̂ββ
∗
+ û∗d is the predicted value of Y ∗di obtained by fitting the LMM.

Calculate also the benchmarked EBLUPs P̂BM∗
d as

P̂BM∗
d = P̂EBLUP∗

d
Ŷ GREG

∑
D
d=1 N̂dP̂EBLUP∗

d
,

4) Repeat Step 3 for b = 1, . . . ,B, where B is large. Note that here the true bootstrap
proportions P∗d are constant over bootstrap replicates because the bootstrap population
in Step 1 is fixed. Let P̂EBLUP∗(b)

d be the EBLUP and P̂BM∗(b)
d be the benchmarked

EBLUP obtained in b-th bootstrap replicate. The nonparametric bootstrap estimator
of the design MSE of P̂EBLUP

d is given by

mseNPB(P̂EBLUP
d ) =

1
B

B

∑
b=1

(
P̂EBLUP∗(b)

d −P∗d
)2

.

Similarly, for the benchmarked EBLUP P̂BM
d , the nonparametric bootstrap estimator

of the design MSE is given by

mseNPB(P̂BM
d ) =

1
B

B

∑
b=1

(
P̂BM∗(b)

d −P∗d
)2

. (6)

In contrast with the parametric bootstrap of Section 3, which generates new population
data in each bootstrap replicate, note that this nonparametric bootstrap procedure is based
only on the original sample data, which is simply replicated using the sampling weights.
In fact, the average over the bootstrap replicates in (6) actually estimates the average over
the possible subsamples sd from district d, which are all based on the same set of nd units.
Thus, the nonparametric bootstrap MSE estimate (6) for district d might be inefficient for a
district with small sample size nd .
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5 Simulation studies for the parametric bootstrap MSE
A model-based simulation study was performed to analyze the performance of (4) and (5) as
estimators of the corresponding model MSEs of the EBLUP and the benchmarked EBLUP.
Since the target variable is actually binary, in this simulation study we consider that the
population data are generated by the GLMM

Ydi|vd ∼ Bern(pdi), log
(

pdi

1− pdi

)
= x′diααα + vd

vd
iid∼ N(0,σ2

v ). (7)

In this way, the true MSE in this simulation study will incorporate any potential bias due to
considering a LMM instead of a GLMM in the parametric bootstrap procedure.

To make the simulation study realistic, we consider as true values of the model parame-
ters ααα and σ2

v in (7), those obtained by fitting the model (7) to the data from the Structural
Survey. Thus, using those fitted values as the true model parameters, to approximate the
true model MSE with good precision, we generate L = 1,000 Monte Carlo populations
from model (7). Let P(`)

d be the true proportion for d-th area in `-th Monte Carlo popu-
lation. From each generated population, we draw a stratified sample with districts acting
as strata and simple random sampling (SRS) within each district. The district sample sizes
were taken as in the simulation studies in Phase I of the project, namely nd = 60+5(k−1),
k = 1, . . . ,D for D = 141. The sample units are kept fixed over the L Monte Carlo repli-
cates because it is a purely model-based simulation study. Let P̂EBLUP(`)

d and P̂BM(`)
d be the

EBLUP and benchmarked EBLUP obtained using the sample data from `-th population. For
the benchmarked EBLUPs, the true model MSEs were approximated as

MSEm(P̂BM
d ) = L−1

L

∑
`=1

(P̂BM(`)
d −P(`)

d )2, d = 1, . . . ,D.

The true model MSEs of the unadjusted EBLUPs for each district were approximated simi-
larly but replacing P̂BM(`)

d by P̂EBLUP(`)
d .

Now to approximate the expected value of the parametric bootstrap MSE estimates, the
simulation study was repeated generating L = 100 Monte Carlo populations. With the sam-
ple data from `-th generated population, we carried out the parametric bootstrap procedure
of Section 3 with number of bootstrap replicates B = 100, obtaining parametric bootstrap
MSE estimates for the benchmarked estimators denoted by mse(`)PB(P̂

BM
d ), `= 1, . . . ,L. Then,

the expected value of the MSE estimates is approximated empirically by averaging the boot-
strap estimates over Monte Carlo replicates as

L−1
L

∑
`=1

mse(`)PB(P̂
BM
d ), d = 1, . . . ,D.

Similarly it was done for the unadjusted EBLUPs.
Results for the benchmarked EBLUP are depicted in Figure 1 for each district in the x

axis, with districts sorted by decreasing sample sizes (labels in the x axis are sample sizes).
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Figure 1 shows that the parametric bootstrap estimates (labeled BOOTSTRAP) are tracking
rather well the empirical values of the true model MSE (labeled TRUE), as expected from
a bootstrap procedure. In fact, the slight more variability of the empirical approximations
to the true model MSEs is very probably due to simulation noise and it would get reduced
by increasing the number of Monte Carlo simulations let us say to L = 10,000. For the
unadjusted EBLUPs, the parametric bootstrap procedure performs very similarly.

It is also interesting to analyze whether the parametric bootstrap MSE, which is an esti-
mator of the model MSE, MSEm(P̂BM

d ), is also an acceptable estimator of the design MSE,
MSEπ(P̂BM

d ). For this purpose, a new simulation study was carried out under the design-
based setup, considering the Structural Survey data as the (fixed) true population and draw-
ing samples out of it. To approximate empirically the true design MSE, a first simulation
study was performed drawing L= 10,000 samples out of the population. The district sample
sizes were taken as in the model-based simulation study described above. Let Pd be the true
proportion for district d, and P̂EBLUP(`)

d and P̂BM(`)
d be the estimates obtained using the data

from `-th sample. The true design MSEs of the benchmarked EBLUPs were approximated
as

MSEπ(P̂BM
d ) = L−1

L

∑
`=1

(P̂BM(`)
d −Pd)

2, d = 1, . . . ,D.

The true design MSEs of the unadjusted EBLUPs P̂BM
d for each district d were approximated

similarly.
Now to estimate the expected value of the parametric bootstrap MSE estimates under the

design-based approach, the simulation study was repeated drawing now L = 100 samples
from the given population. With the data from `-th sample, we carried out the paramet-
ric bootstrap procedure with number of bootstrap replicates B = 100, obtaining parametric
bootstrap MSE estimates of the benchmarked estimates mse(`)PB(P̂

BM
d ), ` = 1, . . . ,L. Then,

we averaged these bootstrap estimates over Monte Carlo samples as

L−1
L

∑
`=1

mse(`)PB(P̂
BM
d ), d = 1, . . . ,D.

The analogous formula is applied for the unadjusted EBLUPs. We have already mentioned 
that the parametric bootstrap procedure estimates the model MSE and not the design MSE. 
However, if the model is approximately correct, the average of these MSEs over a large 
number of areas should be similar. Thus, the parametric bootstrap estimate is expected to 
estimate correctly the design MSE in average but not in each particular area. Figure 2 plots 
the true design MSE together with the parametric bootstrap MSE estimates for each district, 
with districts sorted by decreasing sample sizes. This figure shows that the parametric boot-
strap model MSE estimates track surprisingly well the design MSEs for all districts except 
for three districts with smaller sample sizes, in which the parametric bootstrap seems to un-
derestimate the design MSE. However, note that in these simulations, the true sample sizes 
in the Structural Survey are acting as population sizes. Then, for those districts, the pop-
ulation sizes are actually small and therefore the true design MSEs are somewhat unstable 
for those areas. This instability is not likely to happen in the true data because the smallest 
district population size is very large, min(Nd) = 1839.
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Figure 1: True model MSE (labeled TRUE) of the benchmarked EBLUP based on the LMM
and parametric bootstrap estimator (labeled BOOTSTRAP). Districts sorted by decreasing
sample sizes.
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Figure 2: True design MSE (labeled True) of the benchmarked EBLUP based on the LMM
and parametric bootstrap estimator (labeled Bootstrap). Districts sorted by decreasing sam-
ple sizes.
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6 Results for the STATPOP data set
Table 2 in Appendix 3 gives, for each district within each stratum, the district sample sizes, 
the different estimates of the percentages of active people (GREG, EBLUPs based on the 
LMM and benchmarked EBLUPs) with their estimated percent RRMSEs obtained using the 
parametric bootstrap procedure. These results can be better analyzed with the aid of figures. 
Figure 3 plots the EBLUPs based on the LMM of the district percentages of active peo-
ple (labeled LMM), together with the benchmarked EBLUPs (labeled LMM (BM)) for each 
district. See that the two sets of estimates are very close to each other, with the benchmarked 
estimates just slightly larger than the unadjusted EBLUPs. In fact, the benchmarking adjust-
ment turned out to be 1.0076, which means a very mild adjustment.

Figure 4 represents a line plot of the benchmarked EBLUPs against the GREG estimates. 
Since the GREG estimators are approximately design-unbiased, a cloud of points all above 
or below the line y = x would suggest a systematic design bias of the EBLUPs. This does 
not seem to be the case because the points turn out to be around the line y = x, with points 
distributed at both sides. The group of points that appear below the line close to the top right 
corner indicate some deviation of the EBLUPs to the GREGs for those districts. But note 
that these points correspond to large GREG estimates of the proportions of active people. 
The points are a little further apart from the line because, according to the model, which 
is supposed to fit well the data, these districts should not have such large proportions of 
active people. Take into account that GREG estimates tend to vary more than they should 
due to the small district sample sizes. Thus, the model is smoothing those more extreme 
proportions and providing more reasonable estimates according to the model. In contrast, 
the points with large GREG estimates that appear close to the line correspond to districts in 
which the extreme GREG estimated proportions are explained by the considered auxiliary 
variables in the LMM model.

Figure 5 gives a different display of the two sets of estimates, for each district in the x 
axis. We can see that the estimates are practically the same for the large districts (on the left-
hand side of the plot), but for the districts with smaller sample sizes (on the right-hand side), 
the two estimates present slight deviations. We know that for districts with small sample 
sizes, the GREG estimators can be inefficient as shown in Phase I of the project. Thus, here 
we consider the benchmarked EBLUPs as more reliable estimates.

Figure 6 plots the percent relative root MSE (RRMSE) estimates obtained by the pro-
posed parametric bootstrap procedure with B = 250 replicates, for the unadjusted EBLUPs 
based on the LMM (labeled LMM) and the benchmarked EBLUPs (labeled LMM (BM)). 
See that the estimated RRMSE is about 0.5% larger for the benchmarked estimates in the 
districts with largest sample sizes, but the difference decreases with the district sample size. 
Still, 0.5% is not a stricking RRMSE increase. The decrease of the differences when de-
creasing the district sample size seems to be an artifact of estimating the RRMSE which is 
a ratio of the root MSE over the estimate. This decrease of the differences does not appear 
when looking at the (non-relative) estimated MSEs, see Figure 7. Concerning computation 
time, for the STATPOP data, the parametric bootstrap procedure with B = 250 replicates 
takes less than 22 hours in a 3.40-3.90 gHz PC with an Intel Core i7 processor.

Figure 8 plots the estimated model MSE using the parametric bootstrap method together
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with the estimated design MSE using the nonparametric bootstrap procedure, for the bench-
marked EBLUPs based on the LMM. Note that these two estimates have a different target 
parameter, which is the model MSE in the former and the design MSE in the latter. Thus, 
in principle they do not need to agree. However, if they were good estimates of their corre-
sponding true MSEs and the model was correct, they should show a similar pattern because 
they will be similar when averaging across a large number of districts, see Theorem 1 in 
Appendix 1. By the simulation studies performed in Section 5, we know that the parametric 
bootstrap procedure estimates correctly the model MSE for all districts and it also tracks 
acceptably well the design MSE for the districts with not so small sample sizes. In contrast, 
we do not have information on how the nonparametric bootstrap tracks its corresponding 
design MSE. Still, we can see that both procedures seem to agree for districts with sample 
sizes above nd = 350, but the nonparametric bootstrap estimates of the design MSE give 
very large MSEs for districts with smaller sample sizes. We do not really know which esti-
mate performs better for the design MSE, but the very large MSE estimates for the districts 
with smaller sample sizes seems to suggest some instability of the nonparametric bootstrap 
estimate of the design MSE. We would recommend the use of the nonparametric bootstrap 
MSE estimates only if one wishes to interpret the given uncertainty measures under the 
design-based approach and is strongly averse to potential MSE underestimation.

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5

Area (decreasing sample size)

%
 a

ct
iv

e

20786 3051 2113 3367 2706 2299 1073 922 661 493 339 512 62

LMM LMM (BM)

Figure 3: Estimated district percentages of active people using the EBLUPs and the bench-
marked EBLUPs based on the LMM, with districts sorted by decreasing sample size.
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Figure 4: Estimated district percentages of actives using the benchmarked EBLUPs based
on the LMM model against GREG estimates.
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Figure 5: Estimated district percentages of actives using the GREG estimator and the bench-
marked EBLUPs based on the LMM, with districts sorted by decreasing sample size.

12



0
.5

1
.0

1
.5

2
.0

Area (decreasing sample size)

%
R

R
M

S
E

20786 3051 2113 3367 2706 2299 1073 922 661 493 339 512 62

●●●

●

●

●

●

●●
●

●

●
●

●

●

●●
●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●●●

●
●●

●

●

●

●●

●●

●

●

●

●
●

●●
●

●
●

●
●

●
●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

● LMM (BM) LMM

Figure 6: Estimated percent RRMSEs obtained by parametric bootstrap for the unadjusted
EBLUPs (labeled LMM) and the benchmarked EBLUPs (labeled LMM(BM)) for each dis-
trict, with districts sorted by decreasing sample size.
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Figure 7: Difference between parametric bootstrap MSE estimates for the benchmarked
EBLUPs and the unadjusted EBLUPs for each district, with districts sorted by decreasing
sample size.
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Figure 8: Estimated model MSEs using the parametric bootstrap (labeled “Model MSE”)
together with estimated design MSE using the nonparametric bootstrap (labeled “Design
MSE”), for the benchmarked EBLUPs based on the LMM, with districts sorted by decreas-
ing sample size.

7 Concluding remarks
Below we summarize the main achievements of the two phases of this project:

• A rich and powerful regression model has been found for the activity in Switzerland.
This has an important economic value itself, since the model might help to understand
the factors explaining the activity, and this might provide relevant information for the
design of specific social policies or programs related with the labor force.

• Efficient estimators of the proportions of active people in the Swiss districts have
been found. The selected model explains a large part of the between-district variabil-
ity in the activity and therefore provides estimates of better quality than the current
GREG estimates. The design-based simulation with true data carried out in Phase I
of the project showed that the estimates (EBLUPs) obtained from the selected model
(LMM) achieve a significant reduction in relative error in comparison with the GREG
estimates for practically all districts, see Figure 57 of the report for Phase I. Indeed,
when averaging over districts of similar sample sizes (Figure 59 of the Phase I report),
the (true) design RRMSE of the benchmarked EBLUPs based on the LMM is less than
half of the RRMSE of the GREG estimates even for districts with large sample sizes.
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Thus, for estimation at the district level, large RRMSE reductions are achieved with-
out increasing the district survey sample sizes. This is achieved thanks to a clever use
of the available auxiliary information to establish relationships among all the districts,
which helps to borrow strength from all districts when estimating in a particular one.

• Bootstrap procedures have been proposed for estimating both model MSE and design
MSE. Estimates of design MSEs are typically unstable because they are based on the
district-specific sample size. As shown in the simulation studies of Section 5, the
parametric bootstrap procedure estimates correctly the corresponding model MSE and
it also gives acceptable estimates of the design MSE for the districts with sample sizes
over nd = 350. The nonparametric bootstrap procedure for estimating the design MSE
seems to be also good for the districts with larger sample sizes (nd ≥ 350) but might
be unstable for districts with smaller sample sizes (nd < 350).

• Finally, using the whole STATPOP data and the Structural Survey data, we have com-
puted the EBLUPs together with their benchmarked counterparts, for which the esti-
mated district totals add up to the GREG estimate of the population total. The bench-
marking adjustment turns out to be very mild in the true data, although this mild
adjustment still leads to a small increase in RRMSE. Still, the estimated RRMSEs
of the benchmarked estimates remain below 2% even for the smallest districts, see
Figure 6. Thus, the benchmarked EBLUPs represent more efficient alternatives to the
current GREG district estimates, and their MSEs can be estimated using one of the
parametric bootstrap methods described in Section 3.
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Appendix 1: Design versus model mean squared error
This appendix relates the model MSE and the design MSE of the EBLUP (2) under the 
nested error model (1) with known model parameters and with SRS within each area, when 
domain population sizes Nd are large and area sampling fractions fd = nd/Nd are negligi-
ble. Note that when model parameters are known, the EBLUP equals the BLUP, and for
fd = nd/Nd ≈ 0, the BLUP can be expressed as a convex linear combination of the survey
regression estimator P̃SR

d = ȳd +(X̄d− x̄d)
′βββ and the regression-synthetic estimator X̄′dβββ as

follows
P̃BLUP

d = γdP̃SR
d +(1− γd)X̄′dβββ , (8)

where γd = σ2
u/(σ

2
u +σ2

e /nd) and X̄d = N−1
d ∑

Nd
i=1 xdi. The model MSE of the BLUP with

known βββ is given by

MSEm(P̃BLUP
d ) = γd

σ2
e

nd
. (9)

Regarding the design MSE, first note that under SRS without replacement, the survey
regression estimator is design-unbiased, because

Eπ(P̃SR
d ) = Eπ(ȳd)+

{
X̄d−Eπ(x̄d)

}′
βββ = Pd +(X̄d− X̄d)

′
βββ = 0.

Moreover, since under the design, X̄d is fixed, its sampling variance is given by

Vπ(P̃SR
d ) =Vπ

{
ȳd +(X̄d− x̄d)

′
βββ
}
=Vπ

(
ȳd− x̄′dβββ

)
.

Defining εdi = Ydi−x′diβββ = ud + edi and ε̄d = n−1
d ∑i∈sd

εdi, we have

Vπ(P̃SR
d ) =Vπ(ε̄d) = (1− fd)

S2
εd

nd
,

where S2
εd = (Nd−1)−1

∑
Nd
i=1(εdi− Ēd)

2 and Ēd = N−1
d ∑

Nd
i=1 εdi.

Now, the design MSE of the BLUP given in (8) is

MSEπ(P̃BLUP
d ) = Eπ(P̃BLUP

d −Pd)
2

= Eπ

{
γd(P̃SR

d −Pd)+(1− γd)(X̄′dβββ −Pd)
}2

= γ
2
dVπ(P̃SR

d )+(1− γd)
2(X̄′dβββ −Pd)

2

= γ
2
d (1− fd)

S2
εd

nd
+(1− γd)

2Ē2
d . (10)

The following theorem gives the relation between the design MSE and the model MSE

Theorem 1 (i) The design MSE is model unbiased for the model MSE, that is,

Em
{

MSEπ(P̃BLUP
d )

}
= MSEm(P̃BLUP

d ).

16



(ii) If the fourth-order moments of {ud} and {edi} are uniformly bounded, the average
across areas of the model MSE is asymptotically equivalent to the average across
areas of the design MSE as D→ ∞, that is,

1
D

D

∑
d=1

MSEm(P̃BLUP
d )− 1

D

D

∑
d=1

MSEπ(P̃BLUP
d )

P→ 0.

Proof: (i) Taking model expectation in (10), we obtain

Em
{

MSEπ(P̃BLUP
d )

}
= γ

2
d (1− fd)

Em(S2
εd)

nd
+(1− γd)

2Em(Ē2
d). (11)

But note that εdi− Ēd = Ydi−Pd +(xdi− X̄di)
′βββ = Ỹdi− x̃′diβββ , for Ỹdi = Ydi−Pd and x̃di =

xdi− X̄d . Thus, (Nd−1)S2
εd = ∑

Nd
i=1(Ỹdi− x̃′diβββ )

2 is the residual sum of squares of a regres-
sion through the origin. Note that it holds

Ỹdi− x̃′diβββ = edi−N−1
d

Nd

∑
j=1

ed j =

(
1− 1

Nd

)
edi−

1
Nd

∑
j 6=i

ed j.

Then, we get for Nd large

Em(Ỹdi− x̃′diβββ )
2 =

(
1− 1

Nd

)2

σ
2
e +

1
N2

d
(Nd−1)σ2

e ≈ σ
2
e .

Thus, Em(S2
εd)≈ σ2

e for large Nd . Moreover, we have

Em(Ē2
d) = Em

(
ud +N−1

d

Nd

∑
i=1

edi

)2

= Em(u2
d)+Em

(
N−1

d

Nd

∑
i=1

edi

)2

= σ
2
u +σ

2
e /Nd ≈ σ

2
u .

Thus, using fd = nd/Nd ≈ 0 and inserting γd = σ2
u/(σ

2
u +σ2

e /nd), we have obtained

Em
{

MSEπ(P̃BLUP
d )

}
≈ γ

2
d

σ2
e

nd
+(1− γd)

2
σ

2
u

= γd
σ2

e
nd

= MSEm(P̃BLUP
d ).

(ii) Using (9) and (10), we get

1
D

D

∑
d=1

MSEm(P̃BLUP
d )− 1

D

D

∑
d=1

MSEπ(P̃BLUP
d )

=
1
D

D

∑
d=1

{
γd

σ2
e

nd
− γ

2
d (1− fd)

S2
εd

nd
− (1− γd)

2Ē2
d

}
=

1
D

D

∑
d=1

vd,
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where vd = γd
σ2

e
nd
− γ2

d (1− fd)
S2

εd
nd

+(1− γd)
2Ē2

d . Note that vd are independent, and for Nd
large and for fd ≈ 0, their model expectation is

Em(vd) = γd
σ2

e
nd
− γ

2
d (1− fd)

Em(S2
εd)

nd
− (1− γd)

2Em(Ē2
d)

≈ γd
σ2

e
nd
− γ

2
d

σ2
e

nd
− (1− γd)

2
σ

2
v

= (1− γd)

{
γd

σ2
e

nd
− (1− γd)σ

2
v

}
= 0,

noting that γdσ2
e /nd = (1− γd)σ

2
v . Moreover, we have

Vm

(
1
D

D

∑
d=1

vd

)
=

1
D2

D

∑
d=1

Vm(vd),

which tends to zero as D→ ∞ if Vm(vd) is bounded. But Vm(vd) depends on the fourth-
order moments of {ud} and {edi}, which are uniformly bounded. Then Vm(vd) is bounded
and we have showed that 1

D ∑
D
d=1 vd converges to zero in quadratic mean. Since conver-

gence in quadratic mean implies convergence in probability, 1
D ∑

D
d=1 vd converges to zero in

probability as D→ ∞. �
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Appendix 2: Fitted regression for Structural Survey

Table 1: Model fitting results for LMM
Variable Value Std.Error DF t-value p-value
(Intercept) 0.1442500 0.0070170 285837 20.55713 0.0000***
Strata1=1 -0.0070059 0.0019959 144 -3.51006 0.0006***
District1724=1 0.0789174 0.0128619 144 6.13575 0.0000***
age∈[16,20) 0.3487278 0.0073290 285837 47.58162 0.0000***
age∈[20,60] 0.2908208 0.0069008 285837 42.14277 0.0000***
age∈[60,64] 0.1302745 0.0076731 285837 16.97796 0.0000***
age=64 -0.0015075 0.0095230 285837 -0.15830 0.8742
age≥65 -0.1158139 0.0071840 285837 -16.12112 0.0000***
gender=F -0.0128278 0.0094166 285837 -1.36224 0.1731
civil status=married 0.0165010 0.0020274 285837 8.13905 0.0000***
civil status=widow/er 0.0019708 0.0057550 285837 0.34246 0.7320
civil status=divorced 0.0073863 0.0031928 285837 2.31341 0.0207*
nationality=Swiss -0.0184364 0.0013458 285837 -13.69904 0.0000***
secresid=yes -0.0704905 0.0046144 285837 -15.27629 0.0000***
housesize=2 -0.0022829 0.0017894 285837 -1.27580 0.2020
housesize∈[3,5] -0.0159658 0.0018651 285837 -8.56049 0.0000***
housesize∈[6,10] -0.0326060 0.0032409 285837 -10.06066 0.0000***
housesize>10 0.0131268 0.0161541 285837 0.81260 0.4164
Income∈(0,12000] 0.3519415 0.0024847 285837 141.64245 0.0000***
Income∈(12000,24000] 0.4849786 0.0024818 285837 195.41596 0.0000***
Income∈(24000,48000] 0.5570826 0.0020546 285837 271.14377 0.0000***
Income∈(48000,72000] 0.5771984 0.0020013 285837 288.41058 0.0000***
Income∈(72000,96000] 0.5823435 0.0021831 285837 266.74995 0.0000***
Income∈(96000,120000] 0.5862130 0.0021795 285837 268.97042 0.0000***
Income> 120000 0.6061222 0.0059727 285837 101.48181 0.0000***
OASItri=1 -0.1852942 0.0085840 285837 -21.58584 0.0000***
age∈[16,20):gender=F -0.0137442 0.0104941 285837 -1.30971 0.1903
age∈[20,60):gender=F 0.0133350 0.0096555 285837 1.38108 0.1673
age∈[60,64):gender=F -0.0047423 0.0106959 285837 -0.44337 0.6575
age=64:gender=F -0.1469525 0.0131640 285837 -11.16318 0.0000***
age≥ 65:gender=F 0.0595271 0.0100597 285837 5.91739 0.0000***
gender=F:civil status=married -0.0515040 0.0027248 285837 -18.90159 0.0000***
gender=F:civil status=widow/er -0.0440050 0.0066260 285837 -6.64127 0.0000***
gender=F:civil status=divorced -0.0130737 0.0042418 285837 -3.08211 0.0021**

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Appendix 3: Estimates of district proportions

Table 2: Estimated district proportions of active people and estimated percent RRMSE in parenthesis.
ZH00

Nr 101 102 103 104 105 106 107 108 109 110 111 112
size 1309 807 3455 2113 2294 3088 2600 1488 3220 4075 2063 9510

GREG 0.6913 0.6719 0.7115 0.7229 0.6801 0.6742 0.6234 0.6861 0.6729 0.6823 0.6782 0.7008
LMM 0.6821 0.6803 0.6963 0.7113 0.6783 0.6592 0.6311 0.6838 0.6808 0.6783 0.6703 0.6932

%rrmse (0.847) (0.962) (0.617) (0.713) (0.737) (0.634) (0.747) (0.82) (0.633) (0.575) (0.736) (0.426)
BM 0.6873 0.6855 0.7016 0.7168 0.6835 0.6642 0.6359 0.6890 0.6860 0.6835 0.6755 0.6985

%rrmse (1.118) (1.211) (0.927) (0.962) (1.05) (0.98) (1.046) (1.115) (0.999) (0.92) (1.068) (0.843)
BE02 BE00 LU00

Nr 241 242 243 244 245 246 247 248 249 250 301 302
size 2706 2420 1800 2079 2556 10294 2870 404 1013 1210 909 3493

GREG 0.6219 0.6234 0.7136 0.6601 0.6815 0.6673 0.6409 0.7061 0.6285 0.6608 0.667 0.6952
LMM 0.6216 0.6177 0.6925 0.6556 0.6672 0.6621 0.6433 0.6474 0.6365 0.6514 0.6431 0.6819

%rrmse (0.703) (0.755) (0.815) (0.751) (0.724) (0.4) (0.724) (1.111) (0.999) (0.888) (0.927) (0.59)
BM 0.6263 0.6224 0.6978 0.6606 0.6723 0.6672 0.6482 0.6524 0.6414 0.6564 0.6480 0.6870

%rrmse (0.995) (1.069) (1.074) (1.054) (1.01) (0.824) (1.056) (1.349) (1.234) (1.186) (1.194) (0.928)
LU00 UR00 SZ00 OW00 NW00

Nr 303 304 305 400 501 502 503 504 505 506 600 700
size 9168 3634 2503 895 371 62 703 333 1073 1405 922 1183

GREG 0.6647 0.7 0.6866 0.6277 0.6531 0.6125 0.7031 0.7109 0.6984 0.6831 0.7212 0.6625
LMM 0.6626 0.7004 0.6914 0.6365 0.6793 0.6354 0.6889 0.6929 0.6973 0.6815 0.6977 0.6696

%rrmse (0.402) (0.616) (0.659) (0.991) (1.215) (1.741) (1.091) (1.199) (0.917) (0.865) (0.939) (0.888)
BM 0.6676 0.7058 0.6967 0.6413 0.6845 0.6403 0.6941 0.6982 0.7027 0.6867 0.7030 0.6747

%rrmse (0.824) (0.938) (0.947) (1.208) (1.417) (1.939) (1.306) (1.374) (1.175) (1.119) (1.186) (1.208)
GL00 ZG00 FR00 SO00

Nr 800 900 1001 1002 1003 1004 1005 1006 1007 1101 1102 1103
size 1030 6086 730 571 1238 2509 816 1050 448 493 347 221

GREG 0.6852 0.6833 0.6723 0.6756 0.6492 0.678 0.688 0.6981 0.7263 0.6632 0.6505 0.6715
LMM 0.6682 0.6798 0.6756 0.6752 0.6665 0.6701 0.6865 0.6790 0.7076 0.6901 0.6500 0.6784

%rrmse (0.918) (0.467) (1.031) (1.135) (0.879) (0.74) (0.959) (0.953) (0.972) (1.044) (1.208) (1.255)
BM 0.6733 0.6850 0.6807 0.6803 0.6715 0.6752 0.6917 0.6842 0.713 0.6953 0.6549 0.6835

%rrmse (1.165) (0.908) (1.265) (1.327) (1.153) (1.066) (1.12) (1.152) (1.165) (1.259) (1.431) (1.44)
SO00 BS00 BL00

Nr 1104 1105 1106 1107 1108 1109 1110 1200 1301 1302 1303 1304
size 523 619 1261 1195 1396 428 339 4609 4070 509 1431 873

GREG 0.6169 0.6403 0.6641 0.6425 0.6554 0.6908 0.5957 0.6075 0.6015 0.668 0.6536 0.676
LMM 0.6369 0.6519 0.6568 0.6357 0.6587 0.6851 0.6311 0.6001 0.5979 0.6579 0.6375 0.6720

%rrmse (1.235) (1.055) (0.933) (0.874) (0.969) (1.136) (1.227) (0.601) (0.676) (1.138) (0.943) (0.926)
BM 0.6417 0.6568 0.6618 0.6405 0.6637 0.6903 0.6359 0.6047 0.6024 0.6629 0.6424 0.6771

%rrmse (1.447) (1.29) (1.17) (1.121) (1.222) (1.254) (1.384) (0.964) (1.042) (1.314) (1.148) (1.139)
BL00 SH00 AR00 AI00 SG00
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Nr 1305 1401 1402 1403 1404 1405 1406 1501 1502 1503 1600 1721
size 399 106 202 1368 90 162 122 600 413 389 362 3051

GREG 0.6548 0.7135 0.741 0.6253 0.6717 0.6936 0.7448 0.6773 0.6734 0.7078 0.686 0.6634
LMM 0.6501 0.6798 0.6689 0.6246 0.6244 0.629 0.6551 0.6669 0.6584 0.6648 0.6701 0.6583

%rrmse (1.268) (1.335) (1.237) (0.879) (1.569) (1.37) (1.489) (1.074) (1.062) (1.176) (1.004) (0.677)
BM 0.655 0.685 0.674 0.6294 0.6292 0.6338 0.6601 0.672 0.6635 0.6699 0.6752 0.6633

%rrmse (1.435) (1.516) (1.439) (1.161) (1.693) (1.526) (1.631) (1.295) (1.321) (1.357) (1.266) (1.022)
SG00 GR00

Nr 1722 1723 1724 1725 1726 1727 1728 1821 1822 1823 1824 1825
size 1039 1767 891 966 1678 1136 1841 256 120 326 477 261

GREG 0.6506 0.6845 0.703 0.693 0.6658 0.6541 0.6701 0.6486 0.576 0.6397 0.6507 0.6686
LMM 0.6604 0.6723 0.6785 0.6527 0.6703 0.6459 0.6694 0.6431 0.5776 0.6411 0.6728 0.6560

%rrmse (0.953) (0.789) (1.413) (0.925) (0.848) (0.913) (0.745) (1.185) (1.57) (1.26) (1.116) (1.334)
BM 0.6654 0.6774 0.6837 0.6577 0.6754 0.6508 0.6745 0.6480 0.5821 0.6459 0.678 0.6610

%rrmse (1.166) (1.061) (1.491) (1.188) (1.094) (1.196) (1.064) (1.395) (1.707) (1.552) (1.332) (1.517)
GR00 AG00

Nr 1826 1827 1828 1829 1830 1831 1901 1902 1903 1904 1905 1906
size 690 493 214 1096 660 541 3805 6956 3683 2409 1954 1594

GREG 0.7163 0.6892 0.6042 0.6746 0.6615 0.6071 0.6723 0.6944 0.6692 0.6629 0.6607 0.6709
LMM 0.6845 0.6871 0.5966 0.6584 0.6604 0.6294 0.6689 0.6806 0.6765 0.6615 0.6512 0.6734

%rrmse (1.029) (1.062) (1.379) (0.924) (1.058) (1.124) (0.608) (0.433) (0.584) (0.653) (0.758) (0.807)
BM 0.6897 0.6923 0.6011 0.6634 0.6654 0.6342 0.674 0.6857 0.6816 0.6666 0.6562 0.6785

%rrmse (1.285) (1.237) (1.528) (1.197) (1.276) (1.376) (0.963) (0.857) (0.943) (1.008) (0.995) (1.075)
AG00 TG00 TI00

Nr 1907 1908 1909 1910 1911 2011 2012 2013 2014 2015 2101 2102
size 2941 1575 2299 3367 1645 2656 3324 2316 2276 2603 2577 262

GREG 0.6883 0.7298 0.6661 0.6794 0.6564 0.6378 0.6897 0.6794 0.6971 0.6989 0.5797 0.5559
LMM 0.6833 0.7177 0.6569 0.6803 0.6562 0.6404 0.6856 0.6670 0.6971 0.6902 0.5812 0.5390

%rrmse (0.632) (0.79) (0.718) (0.587) (0.823) (0.658) (0.633) (0.738) (0.665) (0.652) (0.804) (1.522)
BM 0.6885 0.7232 0.6619 0.6855 0.6612 0.6453 0.6908 0.6721 0.7024 0.6954 0.5856 0.5431

%rrmse (0.964) (1.023) (0.952) (0.901) (1.086) (0.943) (0.996) (1.01) (0.967) (0.964) (1.053) (1.630)
TI00 VD00

Nr 2103 2104 2105 2106 2107 2108 2221 2222 2223 2224 2225 2226
size 512 3271 7664 2739 685 314 1986 1923 2029 4325 7617 2915

GREG 0.57 0.5601 0.5675 0.5535 0.5774 0.5962 0.6083 0.6531 0.7063 0.6441 0.6509 0.613
LMM 0.5810 0.5579 0.5731 0.5578 0.5733 0.5828 0.6184 0.6398 0.6930 0.6343 0.6473 0.6147

%rrmse (1.23) (0.824) (0.524) (0.869) (1.238) (1.468) (0.828) (0.789) (0.692) (0.58) (0.457) (0.744)
BM 0.5854 0.5622 0.5774 0.562 0.5777 0.5873 0.6231 0.6447 0.6983 0.6391 0.6523 0.6194

%rrmse (1.451) (1.128) (0.885) (1.112) (1.444) (1.611) (1.081) (1.093) (1.017) (0.908) (0.893) (1.022)
VD00 VS00

Nr 2227 2228 2229 2230 2301 2302 2303 2304 2305 2306 2307 2308
size 3861 4498 3468 3993 661 625 371 138 301 297 1152 1110

GREG 0.6603 0.6492 0.6543 0.6249 0.6049 0.663 0.6294 0.5769 0.6146 0.6043 0.6461 0.6459
LMM 0.6562 0.6469 0.6468 0.6142 0.6306 0.6521 0.6232 0.6076 0.5931 0.6261 0.6548 0.6465
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%rrmse (0.633) (0.547) (0.582) (0.669) (1.088) (1.086) (1.295) (1.41) (1.422) (1.282) (0.936) (0.926)
BM 0.6612 0.6518 0.6517 0.6189 0.6354 0.6571 0.6279 0.6122 0.5976 0.6309 0.6597 0.6515

%rrmse (0.864) (0.899) (0.961) (0.997) (1.383) (1.254) (1.461) (1.57) (1.564) (1.438) (1.208) (1.157)
VS00 NE00 GE00

Nr 2309 2310 2311 2312 2313 2401 2402 2403 2404 2405 2406 2500
size 287 355 1177 1124 663 2052 1980 696 2665 814 581 20786

GREG 0.6144 0.6621 0.6161 0.6325 0.6723 0.6304 0.6358 0.593 0.6347 0.6821 0.6044 0.6218
LMM 0.6211 0.6462 0.6176 0.6324 0.6743 0.6239 0.6223 0.6109 0.6293 0.6710 0.5865 0.6124

%rrmse (1.33) (1.177) (0.949) (0.924) (0.994) (0.788) (0.801) (1.072) (0.695) (0.905) (1.145) (0.31)
BM 0.6259 0.6511 0.6223 0.6373 0.6795 0.6287 0.6270 0.6156 0.6341 0.6761 0.5910 0.6171

%rrmse (1.457) (1.38) (1.227) (1.17) (1.164) (1.084) (1.087) (1.303) (1.024) (1.134) (1.315) (0.81)
JU00

Nr 2601 2602 2603
size 1817 493 1292

GREG 0.6064 0.6858 0.5935
LMM 0.6147 0.6448 0.5813

%rrmse (0.889) (1.125) (0.975)
BM 0.6194 0.6497 0.5857

%rrmse (1.118) (1.361) (1.211)
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